Trigintaduonion
Template:Short description Template:Infobox
In abstract algebra, the trigintaduonions, also known as the Template:Nowrap, Template:Nowrap, Template:Nowrap, or sometimes pathions Template:Nowrap[1][2] form a Template:Nowrap noncommutative and nonassociative algebra over the real numbers,[3][4] usually represented by the capital letter T, boldface Template:Math or blackboard bold .[2]
Names
The word trigintaduonion is derived from Latin Template:Linktext 'thirty' + Template:Linktext 'two' + the suffix -nion, which is used for hypercomplex number systems.
Although trigintaduonion is typically the more widely used term, Robert P. C. de Marrais instead uses the term pathion in reference to the 32 paths of wisdom from the Kabbalistic (Jewish mystical) text Sefer Yetzirah, since pathion is shorter and easier to remember and pronounce. It is represented by blackboard bold .[1] Other names include Template:Nowrap, Template:Nowrap, Template:Nowrap, and Template:Nowrap.
Definition
Every trigintaduonion is a linear combination of the unit trigintaduonions , , , , ..., , which form a basis of the vector space of trigintaduonions. Every trigintaduonion can be represented in the form
with real coefficients Template:Mvar.
The trigintaduonions can be obtained by applying the Cayley–Dickson construction to the sedenions, which can be mathematically expressed as .[5] Applying the Cayley–Dickson construction to the trigintaduonions yields a 64-dimensional algebra called the 64-ions, 64-nions, sexagintaquatronions, or sexagintaquattuornions, sometimes also known as the chingons.[6][7][8]
As a result, the trigintaduonions can also be defined as the following.[5]
An algebra of dimension 4 over the octonions :
- where and
An algebra of dimension 8 over quaternions :
- where and
An algebra of dimension 16 over the complex numbers :
- where and
An algebra of dimension 32 over the real numbers :
- where and
are all subsets of . This relation can be expressed as:
Multiplication
Properties
Like octonions and sedenions, multiplication of trigintaduonions is neither commutative nor associative. However, being products of a Cayley–Dickson construction, trigintaduonions have the property of power associativity, which can be stated as that, for any element of , the power is well defined. They are also flexible, and multiplication is distributive over addition.[9] As with the sedenions, the trigintaduonions contain zero divisors and are thus not a division algebra. Furthermore, in contrast to the octonions, both algebras do not even have the property of being alternative.
Geometric representations
Whereas octonion unit multiplication patterns can be geometrically represented by PG(2,2) (also known as the Fano plane) and sedenion unit multiplication by PG(3,2), trigintaduonion unit multiplication can be geometrically represented by PG(4,2). This can be also extended to PG(5,2) for the 64-nions, as explained in the abstract of Template:Harvtxt:

Furthermore, Template:Harvtxt state that:
The configuration of -nions can thus be generalized as:Template:Sfnp
Multiplication tables
The multiplication of the unit trigintaduonions is illustrated in the two tables below. Combined, they form a single 32×32 table with 1024 cells.[10][5]
Below is the trigintaduonion multiplication table for . The top half of this table, for , corresponds to the multiplication table for the sedenions. The top left quadrant of the table, for and , corresponds to the multiplication table for the octonions.
Below is the trigintaduonion multiplication table for .
Triples
There are 155 distinguished triples (or triads) of imaginary trigintaduonion units in the trigintaduonion multiplication table, which are listed below. In comparison, the octonions have 7 such triples, the sedenions have 35, while the sexagintaquatronions have 651 (See OEIS Template:OEIS link).Template:Sfnp
- 45 triples of type {α, α, β}: {3, 13, 14}, {3, 21, 22}, {3, 25, 26}, {5, 11, 14}, {5, 19, 22}, {5, 25, 28}, {6, 11, 13}, {6, 19, 21}, {6, 26, 28}, {7, 9, 14}, {7, 10, 13}, {7, 11, 12}, {7, 17, 22}, {7, 18, 21}, {7, 19, 20}, {7, 25, 30}, {7, 26, 29}, {7, 27, 28}, {9, 19, 26}, {9, 21, 28}, {10, 19, 25}, {10, 22, 28}, {11, 17, 26}, {11, 18, 25}, {11, 19, 24}, {11, 21, 30}, {11, 22, 29}, {11, 23, 28}, {12, 21, 25}, {12, 22, 26}, {13, 17, 28}, {13, 19, 30}, {13, 20, 25}, {13, 21, 24}, {13, 22, 27}, {13, 23, 26}, {14, 18, 28}, {14, 19, 29}, {14, 20, 26}, {14, 21, 27}, {14, 22, 24}, {14, 23, 25}, {15, 19, 28}, {15, 21, 26}, {15, 22, 25}
- 20 triples of type {β, β, β}: {3, 5, 6}, {3, 9, 10}, {3, 17, 18}, {3, 29, 30}, {5, 9, 12}, {5, 17, 20}, {5, 27, 30}, {6, 10, 12}, {6, 18, 20}, {6, 27, 29}, {9, 17, 24}, {9, 23, 30}, {10, 18, 24}, {10, 23, 29}, {12, 20, 24}, {12, 23, 27}, {15, 17, 30}, {15, 18, 29}, {15, 20, 27}, {15, 23, 24}
- 15 triples of type {β, β, β}: {3, 12, 15}, {3, 20, 23}, {3, 24, 27}, {5, 10, 15}, {5, 18, 23}, {5, 24, 29}, {6, 9, 15}, {6, 17, 23}, {6, 24, 30}, {9, 18, 27}, {9, 20, 29}, {10, 17, 27}, {10, 20, 30}, {12, 17, 29}, {12, 18, 30}
- 60 triples of type {α, β, γ}: {1, 6, 7}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15}, {1, 18, 19}, {1, 20, 21}, {1, 22, 23}, {1, 24, 25}, {1, 26, 27}, {1, 28, 29}, {2, 5, 7}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15}, {2, 17, 19}, {2, 20, 22}, {2, 21, 23}, {2, 24, 26}, {2, 25, 27}, {2, 28, 30}, {3, 4, 7}, {3, 8, 11}, {3, 16, 19}, {3, 28, 31}, {4, 9, 13}, {4, 10, 14}, {4, 11, 15}, {4, 17, 21}, {4, 18, 22}, {4, 19, 23}, {4, 24, 28}, {4, 25, 29}, {4, 26, 30}, {5, 8, 13}, {5, 16, 21}, {5, 26, 31}, {6, 8, 14}, {6, 16, 22}, {6, 25, 31}, {7, 8, 15}, {7, 16, 23}, {7, 24, 31}, {8, 17, 25}, {8, 18, 26}, {8, 19, 27}, {8, 20, 28}, {8, 21, 29}, {8, 22, 30}, {9, 16, 25}, {9, 22, 31}, {10, 16, 26}, {10, 21, 31}, {11, 16, 27}, {11, 20, 31}, {12, 16, 28}, {12, 19, 31}, {13, 16, 29}, {13, 18, 31}, {14, 16, 30}, {14, 17, 31}
- 15 triples of type {β, γ, γ}: {1, 2, 3}, {1, 4, 5}, {1, 8, 9}, {1, 16, 17}, {1, 30, 31}, {2, 4, 6}, {2, 8, 10}, {2, 16, 18}, {2, 29, 31}, {4, 8, 12}, {4, 16, 20}, {4, 27, 31}, {8, 16, 24}, {8, 23, 31}, {5, 16, 31}
Computational algorithms
The first computational algorithm for the multiplication of trigintaduonions was developed by Template:Harvtxt.
Applications
The trigintaduonions have applications in particle physics,[11] quantum physics, and other branches of modern physics.[10] More recently, the trigintaduonions and other hypercomplex numbers have also been used in neural network research[12] and cryptography.
Further algebras
Robert de Marrais's terms for the algebras immediately following the sedenions are the pathions (i.e. trigintaduonions), chingons, routons, and voudons.[8][13] They are summarized as follows.[1][5]
| Name | Dimension | Symbol | Etymology | Other names |
|---|---|---|---|---|
| Pathions | 32 = 25 | , Template:Sfnp | 32 paths of wisdom of Kabbalah, from the Sefer Yetzirah | Trigintaduonions (), 32-nions |
| Chingons | 64 = 26 | , | 64 hexagrams of the I Ching | Sexagintaquatronions, 64-nions |
| Routons | 128 = 27 | , | Massachusetts Route 128, of the "Massachusetts Miracle" | Centumduodetrigintanions, 128-nions |
| Voudons | 256 = 28 | , | 256 deities of the Ifá pantheon of Voodoo or Voudon | Ducentiquinquagintasexions,[14] 256-nions |
References
External links
Template:Navbox Template:Dimension topics Template:Authority control
- ↑ 1.0 1.1 1.2 Template:Cite arXiv
- ↑ 2.0 2.1 Template:Cite arXiv
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ 5.0 5.1 5.2 5.3 Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ 8.0 8.1 Template:Cite journal
- ↑ Template:Cite web
- ↑ 10.0 10.1 Template:Cite journal
- ↑ Template:Cite arXiv
- ↑ Template:Cite journal
- ↑ Template:Cite arXiv
- ↑ Template:Cite journal