Atiyah conjecture

From testwiki
Revision as of 19:45, 9 March 2022 by imported>Joel Brennan (added wikilinks)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:For In mathematics, the Atiyah conjecture is a collective term for a number of statements about restrictions on possible values of l2-Betti numbers.

History

In 1976, Michael Atiyah introduced l2-cohomology of manifolds with a free co-compact action of a discrete countable group (e.g. the universal cover of a compact manifold together with the action of the fundamental group by deck transformations.) Atiyah defined also Template:Nowrap numbers as von Neumann dimensions of the resulting Template:Nowrap groups, and computed several examples, which all turned out to be rational numbers. He therefore asked if it is possible for l2-Betti numbers to be irrational.

Since then, various researchers asked more refined questions about possible values of l2-Betti numbers, all of which are customarily referred to as "Atiyah conjecture".

Results

Many positive results were proven by Peter Linnell. For example, if the group acting is a free group, then the l2-Betti numbers are integers.

The most general question open as of late 2011 is whether l2-Betti numbers are rational if there is a bound on the orders of finite subgroups of the group which acts. In fact, a precise relationship between possible denominators and the orders in question is conjectured; in the case of torsion-free groups, this statement generalizes the zero-divisors conjecture. For a discussion see the article of B. Eckmann.

In the case there is no such bound, Tim Austin showed in 2009 that l2-Betti numbers can assume transcendental values. Later it was shown that in that case they can be any non-negative real numbers.

References