Aurifeuillean factorization

From testwiki
Revision as of 04:01, 15 January 2025 by 220.132.216.52 (talk) (Examples: new main table)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is factorization of certain integer values of the cyclotomic polynomials.[1] Because cyclotomic polynomials are irreducible polynomials over the integers, such a factorization cannot come from an algebraic factorization of the polynomial. Nevertheless, certain families of integers coming from cyclotomic polynomials have factorizations given by formulas applying to the whole family, as in the examples below.

Examples

  • Numbers of the form a4+4b4 have the following factorization (Sophie Germain's identity): a4+4b4=(a22ab+2b2)(a2+2ab+2b2). Setting a=1 and b=2k, one obtains the following aurifeuillean factorization of Φ4(22k+1)=24k+2+1, where Φ4(x)=x2+1 is the fourth cyclotomic polynomial:[2] 24k+2+1=(22k+12k+1+1)(22k+1+2k+1+1).
  • Numbers of the form a6+27b6 have the following factorization, where the first factor (a2+3b2) is the algebraic factorization of sum of two cubes: a6+27b6=(a2+3b2)(a23ab+3b2)(a2+3ab+3b2). Setting a=1 and b=3k, one obtains the following factorization of 36k+3+1:[2] 36k+3+1=(32k+1+1)(32k+13k+1+1)(32k+1+3k+1+1). Here, the first of the three terms in the factorization is Φ2(32k+1) and the remaining two terms provide an aurifeuillean factorization of Φ6(32k+1), where Φ6(x)=x2x+1.
  • Numbers of the form bn1 or their factors Φn(b), where b=s2t with square-free t, have aurifeuillean factorization if and only if one of the following conditions holds:
    • t1(mod4) and nt(mod2t)
    • t2,3(mod4) and n2t(mod4t)
Thus, when b=s2t with square-free t, and n is congruent to t modulo 2t, then if t is congruent to 1 mod 4, bn1 have aurifeuillean factorization, otherwise, bn+1 have aurifeuillean factorization.
  • When the number is of a particular form (the exact expression varies with the base), aurifeuillean factorization may be used, which gives a product of two or three numbers. The following equations give aurifeuillean factors for the Cunningham project bases as a product of F, L and M:[3]
If we let L = CD, M = C + D, the aurifeuillean factorizations for bn ± 1 of the form F * (CD) * (C + D) = F * L * M with the bases 2 ≤ b ≤ 24 (perfect powers excluded, since a power of bn is also a power of b) are:
(for the coefficients of the polynomials for all square-free bases up to 199 and up to 998, see [4][5][6])
b Number (CD) * (C + D) = L * M F C D
2 24k + 2 + 1 Φ4(22k+1) 1 22k + 1 + 1 2k + 1
3 36k + 3 + 1 Φ6(32k+1) 32k + 1 + 1 32k + 1 + 1 3k + 1
5 510k + 5 - 1 Φ5(52k+1) 52k + 1 - 1 54k + 2 + 3(52k + 1) + 1 53k + 2 + 5k + 1
6 612k + 6 + 1 Φ12(62k+1) 64k + 2 + 1 64k + 2 + 3(62k + 1) + 1 63k + 2 + 6k + 1
7 714k + 7 + 1 Φ14(72k+1) 72k + 1 + 1 76k + 3 + 3(74k + 2) + 3(72k + 1) + 1 75k + 3 + 73k + 2 + 7k + 1
10 1020k + 10 + 1 Φ20(102k+1) 104k + 2 + 1 108k + 4 + 5(106k + 3) + 7(104k + 2)
+ 5(102k + 1) + 1
107k + 4 + 2(105k + 3) + 2(103k + 2)
+ 10k + 1
11 1122k + 11 + 1 Φ22(112k+1) 112k + 1 + 1 1110k + 5 + 5(118k + 4) - 116k + 3
- 114k + 2 + 5(112k + 1) + 1
119k + 5 + 117k + 4 - 115k + 3
+ 113k + 2 + 11k + 1
12 126k + 3 + 1 Φ6(122k+1) 122k + 1 + 1 122k + 1 + 1 6(12k)
13 1326k + 13 - 1 Φ13(132k+1) 132k + 1 - 1 1312k + 6 + 7(1310k + 5) + 15(138k + 4)
+ 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 1
1311k + 6 + 3(139k + 5) + 5(137k + 4)
+ 5(135k + 3) + 3(133k + 2) + 13k + 1
14 1428k + 14 + 1 Φ28(142k+1) 144k + 2 + 1 1412k + 6 + 7(1410k + 5) + 3(148k + 4)
- 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 1
1411k + 6 + 2(149k + 5) - 147k + 4
- 145k + 3 + 2(143k + 2) + 14k + 1
15 1530k + 15 + 1 Φ30(152k+1) 1514k + 7 - 1512k + 6 + 1510k + 5
+ 154k + 2 - 152k + 1 + 1
158k + 4 + 8(156k + 3) + 13(154k + 2)
+ 8(152k + 1) + 1
157k + 4 + 3(155k + 3) + 3(153k + 2)
+ 15k + 1
17 1734k + 17 - 1 Φ17(172k+1) 172k + 1 - 1 1716k + 8 + 9(1714k + 7) + 11(1712k + 6)
- 5(1710k + 5) - 15(178k + 4) - 5(176k + 3)
+ 11(174k + 2) + 9(172k + 1) + 1
1715k + 8 + 3(1713k + 7) + 1711k + 6
- 3(179k + 5) - 3(177k + 4) + 175k + 3
+ 3(173k + 2) + 17k + 1
18 184k + 2 + 1 Φ4(182k+1) 1 182k + 1 + 1 6(18k)
19 1938k + 19 + 1 Φ38(192k+1) 192k + 1 + 1 1918k + 9 + 9(1916k + 8) + 17(1914k + 7)
+ 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4)
+ 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 1
1917k + 9 + 3(1915k + 8) + 5(1913k + 7)
+ 7(1911k + 6) + 7(199k + 5) + 7(197k + 4)
+ 5(195k + 3) + 3(193k + 2) + 19k + 1
20 2010k + 5 - 1 Φ5(202k+1) 202k + 1 - 1 204k + 2 + 3(202k + 1) + 1 10(203k + 1) + 10(20k)
21 2142k + 21 - 1 Φ21(212k+1) 2118k + 9 + 2116k + 8 + 2114k + 7
- 214k + 2 - 212k + 1 - 1
2112k + 6 + 10(2110k + 5) + 13(218k + 4)
+ 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 1
2111k + 6 + 3(219k + 5) + 2(217k + 4)
+ 2(215k + 3) + 3(213k + 2) + 21k + 1
22 2244k + 22 + 1 Φ44(222k+1) 224k + 2 + 1 2220k + 10 + 11(2218k + 9) + 27(2216k + 8)
+ 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5)
+ 21(228k + 4) + 33(226k + 3) + 27(224k + 2)
+ 11(222k + 1) + 1
2219k + 10 + 4(2217k + 9) + 7(2215k + 8)
+ 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5)
+ 6(227k + 4) + 7(225k + 3) + 4(223k + 2)
+ 22k + 1
23 2346k + 23 + 1 Φ46(232k+1) 232k + 1 + 1 2322k + 11 + 11(2320k + 10) + 9(2318k + 9)
- 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6)
+ 25(2310k + 5) - 15(238k + 4) - 19(236k + 3)
+ 9(234k + 2) + 11(232k + 1) + 1
2321k + 11 + 3(2319k + 10) - 2317k + 9
- 5(2315k + 8) + 2313k + 7 + 7(2311k + 6)
+ 239k + 5 - 5(237k + 4) - 235k + 3
+ 3(233k + 2) + 23k + 1
24 2412k + 6 + 1 Φ12(242k+1) 244k + 2 + 1 244k + 2 + 3(242k + 1) + 1 12(243k + 1) + 12(24k)
L10k+5=L2k+1(5F2k+125F2k+1+1)(5F2k+12+5F2k+1+1)
where Ln is the nth Lucas number, and Fn is the nth Fibonacci number.

History

In 1869, before the discovery of aurifeuillean factorizations, Template:Ill, through a tremendous manual effort,[8][9] obtained the following factorization into primes:

258+1=5107367629536903681.

Three years later, in 1871, Aurifeuille discovered the nature of this factorization; the number 24k+2+1 for k=14, with the formula from the previous section, factors as:[2][8]

258+1=(229215+1)(229+215+1)=536838145536903681.

Of course, Landry's full factorization follows from this (taking out the obvious factor of 5). The general form of the factorization was later discovered by Lucas.[2]

536903681 is an example of a Gaussian Mersenne norm.[9]

References

Template:Reflist