Fermat quotient

From testwiki
Revision as of 21:43, 7 April 2024 by imported>InternetArchiveBot (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In number theory, the Fermat quotient of an integer a with respect to an odd prime p is defined as[1][2][3][4]

qp(a)=ap11p,

or

δp(a)=aapp.

This article is about the former; for the latter see p-derivation. The quotient is named after Pierre de Fermat.

If the base a is coprime to the exponent p then Fermat's little theorem says that qp(a) will be an integer. If the base a is also a generator of the multiplicative group of integers modulo p, then qp(a) will be a cyclic number, and p will be a full reptend prime.

Properties

From the definition, it is obvious that

qp(1)0(modp)qp(a)qp(a)(modp)(since 2p1)

In 1850, Gotthold Eisenstein proved that if a and b are both coprime to p, then:[5]

qp(ab)qp(a)+qp(b)(modp)qp(ar)rqp(a)(modp)qp(pa)qp(a)±1a(modp)qp(p1)±1(modp)

Eisenstein likened the first two of these congruences to properties of logarithms. These properties imply

qp(1a)qp(a)(modp)qp(ab)qp(a)qp(b)(modp)

In 1895, Dmitry Mirimanoff pointed out that an iteration of Eisenstein's rules gives the corollary:[6]

qp(a+np)qp(a)n1a(modp).

From this, it follows that:[7]

qp(a+np2)qp(a)(modp).

Lerch's formula

M. Lerch proved in 1905 that[8][9][10]

j=1p1qp(j)Wp(modp).

Here Wp is the Wilson quotient.

Special values

Eisenstein discovered that the Fermat quotient with base 2 could be expressed in terms of the sum of the reciprocals modulo p of the numbers lying in the first half of the range {1, ..., p − 1}:

2qp(2)k=1p121k(modp).

Later writers showed that the number of terms required in such a representation could be reduced from 1/2 to 1/4, 1/5, or even 1/6:

3qp(2)k=1p41k(modp).[11]
4qp(2)k=p10+12p101k+k=3p10+14p101k(modp).[12]
2qp(2)k=p6+1p31k(modp).[13][14]

Eisenstein's series also has an increasingly complex connection to the Fermat quotients with other bases, the first few examples being:

3qp(3)2k=1p31k(modp).[15]
5qp(5)4k=1p51k+2k=p5+12p51k(modp).[16]

Generalized Wieferich primes

If qp(a) ≡ 0 (mod p) then ap−1 ≡ 1 (mod p2). Primes for which this is true for a = 2 are called Wieferich primes. In general they are called Wieferich primes base a. Known solutions of qp(a) ≡ 0 (mod p) for small values of a are:[2]

a p (checked up to 5 × 1013) OEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (All primes) Template:OEIS link
2 1093, 3511 Template:OEIS link
3 11, 1006003 Template:OEIS link
4 1093, 3511
5 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 Template:OEIS link
6 66161, 534851, 3152573 Template:OEIS link
7 5, 491531 Template:OEIS link
8 3, 1093, 3511
9 2, 11, 1006003
10 3, 487, 56598313 Template:OEIS link
11 71
12 2693, 123653 Template:OEIS link
13 2, 863, 1747591 Template:OEIS link
14 29, 353, 7596952219 Template:OEIS link
15 29131, 119327070011 Template:OEIS link
16 1093, 3511
17 2, 3, 46021, 48947, 478225523351 Template:OEIS link
18 5, 7, 37, 331, 33923, 1284043 Template:OEIS link
19 3, 7, 13, 43, 137, 63061489 Template:OEIS link
20 281, 46457, 9377747, 122959073 Template:OEIS link
21 2
22 13, 673, 1595813, 492366587, 9809862296159 Template:OEIS link
23 13, 2481757, 13703077, 15546404183, 2549536629329 Template:OEIS link
24 5, 25633
25 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
26 3, 5, 71, 486999673, 6695256707
27 11, 1006003
28 3, 19, 23
29 2
30 7, 160541, 94727075783

For more information, see [17][18][19] and.[20]

The smallest solutions of qp(a) ≡ 0 (mod p) with a = n are:

2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3, ... Template:OEIS

A pair (p, r) of prime numbers such that qp(r) ≡ 0 (mod p) and qr(p) ≡ 0 (mod r) is called a Wieferich pair.

References

  1. Template:MathWorld
  2. 2.0 2.1 Template:Cite web
  3. Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (1979), especially pp. 152, 159-161.
  4. Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (2000), p. 216.
  5. Gotthold Eisenstein, "Neue Gattung zahlentheoret. Funktionen, die v. 2 Elementen abhangen und durch gewisse lineare Funktional-Gleichungen definirt werden," Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin 1850, 36-42
  6. Dmitry Mirimanoff, "Sur la congruence (rp − 1 − 1):p = qr (mod p)," Journal für die reine und angewandte Mathematik 115 (1895): 295-300
  7. Paul Bachmann, Niedere Zahlentheorie, 2 vols. (Leipzig, 1902), 1:159.
  8. Template:Cite journal
  9. Template:Cite arXiv
  10. Template:Cite arXiv
  11. James Whitbread Lee Glaisher, "On the Residues of rp − 1 to Modulus p2, p3, etc.," Quarterly Journal of Pure and Applied Mathematics 32 (1901): 1-27.
  12. Ladislav Skula, "A note on some relations among special sums of reciprocals modulo p," Mathematica Slovaca 58 (2008): 5-10.
  13. Emma Lehmer, "On Congruences involving Bernoulli Numbers and the Quotients of Fermat and Wilson," Annals of Mathematics 39 (1938): 350–360, pp. 356ff.
  14. Karl Dilcher and Ladislav Skula, "A New Criterion for the First Case of Fermat's Last Theorem," Mathematics of Computation 64 (1995): 363-392.
  15. James Whitbread Lee Glaisher, "A General Congruence Theorem relating to the Bernoullian Function," Proceedings of the London Mathematical Society 33 (1900-1901): 27-56, at pp. 49-50.
  16. Mathias Lerch, "Zur Theorie des Fermatschen Quotienten…," Mathematische Annalen 60 (1905): 471-490.
  17. Wieferich primes to bases up to 1052
  18. Template:Cite web
  19. Wieferich prime in prime bases up to 1000 Template:Webarchive
  20. Wieferich primes with level >= 3