Kuratowski embedding

From testwiki
Revision as of 21:45, 8 January 2025 by imported>1234qwer1234qwer4 (History: lk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, the Kuratowski embedding allows one to view any metric space as a subset of some Banach space. It is named after Kazimierz Kuratowski.

The statement obviously holds for the empty space. If (X,d) is a metric space, x0 is a point in X, and Cb(X) denotes the Banach space of all bounded continuous real-valued functions on X with the supremum norm, then the map

Φ:XCb(X)

defined by

Φ(x)(y)=d(x,y)d(x0,y)for allx,yX

is an isometry.[1]

The above construction can be seen as embedding a pointed metric space into a Banach space.

The Kuratowski–Wojdysławski theorem states that every bounded metric space X is isometric to a closed subset of a convex subset of some Banach space.[2] (N.B. the image of this embedding is closed in the convex subset, not necessarily in the Banach space.) Here we use the isometry

Ψ:XCb(X)

defined by

Ψ(x)(y)=d(x,y)for allx,yX

The convex set mentioned above is the convex hull of Ψ(X).

In both of these embedding theorems, we may replace Cb(X) by the Banach space  ∞(X) of all bounded functions XR, again with the supremum norm, since Cb(X) is a closed linear subspace of  ∞(X).

These embedding results are useful because Banach spaces have a number of useful properties not shared by all metric spaces: they are vector spaces which allows one to add points and do elementary geometry involving lines and planes etc.; and they are complete. Given a function with codomain X, it is frequently desirable to extend this function to a larger domain, and this often requires simultaneously enlarging the codomain to a Banach space containing X.

History

Formally speaking, this embedding was first introduced by Kuratowski,[3] but a very close variation of this embedding appears already in the papers of Fréchet. Those papers make use of the embedding respectively to exhibit as a "universal" separable metric space (it isn't itself separable, hence the scare quotes)[4] and to construct a general metric on by pulling back the metric on a simple Jordan curve in .[5]

See also

References

Template:Reflist

  1. Template:Citation
  2. Template:Citation. Theorem III.8.1
  3. Kuratowski, C. (1935) "Quelques problèmes concernant les espaces métriques non-separables" (Some problems concerning non-separable metric spaces), Fundamenta Mathematicae 25: pp. 534–545.
  4. Template:Cite journal
  5. Template:Cite journal