Tensor decomposition
Template:Short description Template:Refimprove
In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.[1][2][3] Many tensor decompositions generalize some matrix decompositions.[4]
Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.[1][5] The main tensor decompositions are:
- Tensor rank decomposition;[6]
- Higher-order singular value decomposition;[7]
- Tucker decomposition;
- matrix product states, and operators or tensor trains;
- Online Tensor Decompositions[8][9][10]
- hierarchical Tucker decomposition;[11]
- block term decomposition[12][13][11][14]
Notation
This section introduces basic notations and operations that are widely used in the field.
| Symbols | Definition |
|---|---|
| scalar, vector, row, matrix, tensor | |
| vectorizing either a matrix or a tensor | |
| matrixized tensor | |
| mode-m product |
Introduction
A multi-way graph with K perspectives is a collection of K matrices with dimensions I ร J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I ร J ร K. In order to avoid overloading the term โdimensionโ, we call an I ร J ร K tensor a three โmodeโ tensor, where โmodesโ are the numbers of indices used to index the tensor.
References
- โ 1.0 1.1 Template:Cite journal
- โ Template:Cite journal
- โ Template:Cite journal
- โ Template:Cite journal
- โ Template:Cite arXiv
- โ Template:Cite book
- โ Template:Cite book
- โ Template:Cite book
- โ Template:Cite book
- โ Template:Cite arXiv
- โ 11.0 11.1 Template:Cite conference
- โ Template:Cite journal
- โ Template:Citation
- โ Template:Cite book