Moore matrix

From testwiki
Revision as of 10:52, 12 November 2024 by imported>Citation bot (Added doi. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Determinants | #UCB_Category 29/47)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In linear algebra, a Moore matrix, introduced by Template:Harvs, is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant (this is unrelated to the Moore determinant of a quaternionic Hermitian matrix). The Moore matrix has successive powers of the Frobenius automorphism applied to its columns (beginning with the zeroth power of the Frobenius automorphism in the first column), so it is an m × n matrix M=[α1α1qα1qn1α2α2qα2qn1α3α3qα3qn1αmαmqαmqn1] or Mi,j=αiqj1 for all indices i and j. (Some authors use the transpose of the above matrix.)

The Moore determinant of a square Moore matrix (so m = n) can be expressed as:

det(V)=𝐜(c1α1++cnαn),

where c runs over a complete set of direction vectors, made specific by having the last non-zero entry equal to 1, i.e.,

det(V)=1inc1,,ci1(c1α1++ci1αi1+αi).

In particular the Moore determinant vanishes if and only if the elements in the left hand column are linearly dependent over the finite field of order q. So it is analogous to the Wronskian of several functions.

Dickson used the Moore determinant in finding the modular invariants of the general linear group over a finite field.

See also

References

Template:Refbegin

Template:Refend

Template:Matrix classes Template:Authority control


Template:Matrix-stub