Toda's theorem

From testwiki
Revision as of 22:45, 8 June 2020 by imported>ArnoldReinhold (Changing short description from "The polynomial hierarchy has a deterministic polynomial-time Turing reduction to counting" to "The polynomial hierarchy is contained in probabilistic Turing machine in polynomial time" (Shortdesc helper))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Toda's theorem is a result in computational complexity theory that was proven by Seinosuke Toda in his paper "PP is as Hard as the Polynomial-Time Hierarchy"[1] and was given the 1998 Gödel Prize.

Statement

The theorem states that the entire polynomial hierarchy PH is contained in PPP; this implies a closely related statement, that PH is contained in P#P.

Definitions

#P is the problem of exactly counting the number of solutions to a polynomially-verifiable question (that is, to a question in NP), while loosely speaking, PP is the problem of giving an answer that is correct more than half the time. The class P#P consists of all the problems that can be solved in polynomial time if you have access to instantaneous answers to any counting problem in #P (polynomial time relative to a #P oracle). Thus Toda's theorem implies that for any problem in the polynomial hierarchy there is a deterministic polynomial-time Turing reduction to a counting problem.[2]

An analogous result in the complexity theory over the reals (in the sense of Blum–Shub–Smale real Turing machines) was proved by Saugata Basu and Thierry Zell in 2009[3] and a complex analogue of Toda's theorem was proved by Saugata Basu in 2011.[4]

Proof

The proof is broken into two parts.

  • First, it is established that
ΣP𝖡𝖯𝖯𝖡𝖯𝖯
The proof uses a variation of Valiant–Vazirani theorem. Because 𝖡𝖯𝖯 contains 𝖯 and is closed under complement, it follows by induction that 𝖯𝖧𝖡𝖯𝖯.
  • Second, it is established that
𝖡𝖯𝖯𝖯P

Together, the two parts imply

𝖯𝖧𝖡𝖯𝖯𝖯𝖯𝖯P

References

Template:Reflist

  1. Template:Cite journal
  2. 1998 Gödel Prize. Seinosuke Toda
  3. Saugata Basu and Thierry Zell (2009); Polynomial Hierarchy, Betti Numbers and a Real Analogue of Toda's Theorem, in Foundations of Computational Mathematics
  4. Saugata Basu (2011); A Complex Analogue of Toda's Theorem, in Foundations of Computational Mathematics