Ackermann ordinal

From testwiki
Revision as of 21:02, 5 February 2024 by imported>LaundryPizza03 (MOS:EDITORIAL)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:About In mathematics, the Ackermann ordinal is a certain large countable ordinal, named after Wilhelm Ackermann. The term "Ackermann ordinal" is also occasionally used for the small Veblen ordinal, a somewhat larger ordinal.

There is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are "collapsing functions". The last one is an extension of the Veblen functions for more than 2 arguments.

The smaller Ackermann ordinal is the limit of a system of ordinal notations invented by Template:Harvtxt, and is sometimes denoted by φΩ2(0) or θ(Ω2), ψ(ΩΩ2), or φ(1,0,0,0), where Ω is the smallest uncountable ordinal. Ackermann's system of notation is weaker than the system introduced much earlier by Template:Harvtxt, which he seems to have been unaware of.

References

Template:Refbegin

Template:Refend

Template:Countable ordinals


Template:Settheory-stub Template:Number-stub