Minkowski content

From testwiki
Revision as of 03:38, 14 March 2023 by imported>Citation bot (Misc citation tidying. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_CommandLine)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets.

It is typically applied to fractal boundaries of domains in the Euclidean space, but it can also be used in the context of general metric measure spaces.

It is related to, although different from, the Hausdorff measure.

Definition

For An, and each integer m with 0mn, the m-dimensional upper Minkowski content is

M*m(A)=lim supr0+μ({x:d(x,A)<r})α(nm)rnm

and the m-dimensional lower Minkowski content is defined as

M*m(A)=lim infr0+μ({x:d(x,A)<r})α(nm)rnm

where α(nm)rnm is the volume of the (nm)-ball of radius r and μ is an n-dimensional Lebesgue measure.

If the upper and lower m-dimensional Minkowski content of A are equal, then their common value is called the Minkowski content Mm(A).[1][2]

Properties

  • The Minkowski content is (generally) not a measure. In particular, the m-dimensional Minkowski content in Rn is not a measure unless m = 0, in which case it is the counting measure. Indeed, clearly the Minkowski content assigns the same value to the set A as well as its closure.
  • If A is a closed m-rectifiable set in Rn, given as the image of a bounded set from Rm under a Lipschitz function, then the m-dimensional Minkowski content of A exists, and is equal to the m-dimensional Hausdorff measure of A.[3]

See also

Footnotes

Template:Reflist

References