Gravitational binding energy

From testwiki
Revision as of 20:01, 5 February 2025 by imported>Light Peak (Corrected capitalization of "Newtonian" for consistency within the article)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

Galaxy clusters are the largest known gravitationally bound structures in the universe.[1]

The gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state. A gravitationally bound system has a lower (i.e., more negative) gravitational potential energy than the sum of the energies of its parts when these are completely separated—this is what keeps the system aggregated in accordance with the minimum total potential energy principle.

The gravitational binding energy can be conceptually different within the theories of Newtonian gravity and Albert Einstein's theory of gravity called General Relativity. In Newtonian gravity, the binding energy can be considered to be the linear sum of the interactions between all pairs of microscopic components of the system, while in General Relativity, this is only approximately true if the gravitational fields are all weak. When stronger fields are present within a system, the binding energy is a nonlinear property of the Template:Em system, and it cannot be conceptually attributed among the elements of the system. In this case the binding energy can be considered to be the (negative) difference between the ADM mass of the system, as it is manifest in its gravitational interaction with other distant systems, and the sum of the energies of all the atoms and other elementary particles of the system if disassembled.

For a spherical body of uniform density, the gravitational binding energy U is given in Newtonian gravity by the formula[2][3] U=3GM25R where G is the gravitational constant, M is the mass of the sphere, and R is its radius.

Assuming that the Earth is a sphere of uniform density (which it is not, but is close enough to get an order-of-magnitude estimate) with M = Template:Val and r = Template:Val, then U = Template:Val. This is roughly equal to one week of the Sun's total energy output. It is Template:Val, 60% of the absolute value of the potential energy per kilogram at the surface.

The actual depth-dependence of density, inferred from seismic travel times (see Adams–Williamson equation), is given in the Preliminary Reference Earth Model (PREM).[4] Using this, the real gravitational binding energy of Earth can be calculated numerically as U = Template:Val.

According to the virial theorem, the gravitational binding energy of a star is about two times its internal thermal energy in order for hydrostatic equilibrium to be maintained.[2] As the gas in a star becomes more relativistic, the gravitational binding energy required for hydrostatic equilibrium approaches zero and the star becomes unstable (highly sensitive to perturbations), which may lead to a supernova in the case of a high-mass star due to strong radiation pressure or to a black hole in the case of a neutron star.

Derivation within Newtonian gravity for a uniform sphere

The gravitational binding energy of a sphere with radius R is found by imagining that it is pulled apart by successively moving spherical shells to infinity, the outermost first, and finding the total energy needed for that.

Assuming a constant density ρ, the masses of a shell and the sphere inside it are: mshell=4πr2ρdr and minterior=43πr3ρ

The required energy for a shell is the negative of the gravitational potential energy: dU=Gmshellminteriorr

Integrating over all shells yields: U=G0R(4πr2ρ)(43πr3ρ)rdr=G163π2ρ20Rr4dr=G1615π2ρ2R5

Since ρ is simply equal to the mass of the whole divided by its volume for objects with uniform density, therefore

ρ=M43πR3

And finally, plugging this into our result leads to U=G1615π2R5(M43πR3)2=3GM25R

Gravitational binding energy

U=3GM25R

Negative mass component

Template:Cleanup rewrite

Two bodies, placed at the distance R from each other and reciprocally not moving, exert a gravitational force on a third body slightly smaller when R is small. This can be seen as a negative mass component of the system, equal, for uniformly spherical solutions, to: Mbinding=3GM25Rc2

For example, the fact that Earth is a gravitationally-bound sphere of its current size costs Template:Val of mass (roughly one fourth the mass of Phobos – see above for the same value in Joules), and if its atoms were sparse over an arbitrarily large volume the Earth would weigh its current mass plus Template:Val kilograms (and its gravitational pull over a third body would be accordingly stronger).

It can be easily demonstrated that this negative component can never exceed the positive component of a system. A negative binding energy greater than the mass of the system itself would indeed require that the radius of the system be smaller than: R3GM5c2 which is smaller than 310 its Schwarzschild radius: R310rs and therefore never visible to an external observer. However this is only a Newtonian approximation and in relativistic conditions other factors must be taken into account as well.[5]

Non-uniform spheres

Planets and stars have radial density gradients from their lower density surfaces to their much denser compressed cores. Degenerate matter objects (white dwarfs; neutron star pulsars) have radial density gradients plus relativistic corrections.

Neutron star relativistic equations of state include a graph of radius vs. mass for various models.[6] The most likely radii for a given neutron star mass are bracketed by models AP4 (smallest radius) and MS2 (largest radius). BE is the ratio of gravitational binding energy mass equivalent to observed neutron star gravitational mass of M with radius R, BE=0.60β1β2 β=GMRc2.

Given current values

  • G=6.6743×1011m3kg1s2Template:Physconst
  • c2=8.98755×1016m2s2
  • M=1.98844×1030kg

and the star mass M expressed relative to the solar mass, Mx=MM,

then the relativistic fractional binding energy of a neutron star is

BE=885.975MxR738.313Mx

See also

References

  1. Template:Cite web
  2. 2.0 2.1 Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
  3. Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  4. Template:Cite journal
  5. Template:Cite journal
  6. Neutron Star Masses and Radii Template:Webarchive, p. 9/20, bottom