Glycine—tRNA ligase

From testwiki
Revision as of 23:48, 2 December 2023 by imported>Citation bot (Add: doi-access, bibcode. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Infobox enzyme Template:Infobox gene Glycine—tRNA ligase also known as glycyl–tRNA synthetase is an enzyme that in humans is encoded by the GARS1 gene.[1][2][3]

Function

This gene encodes glycyl-tRNA synthetase, one of the aminoacyl-tRNA synthetases that charge tRNAs with their cognate amino acids. The encoded enzyme is an (alpha)2 dimer which belongs to the class II family of tRNA synthetases.[3]

Reaction

In enzymology, a glycine—tRNA ligase (Template:EnzExplorer) is an enzyme that catalyzes the chemical reaction

ATP + glycine + tRNAGly AMP + diphosphate + glycyl-tRNAGly

The 3 substrates of this enzyme are ATP, glycine, and tRNA(Gly), whereas its 3 products are AMP, diphosphate, and glycyl-tRNA(Gly).

This enzyme belongs to the family of ligases, to be specific those forming carbon-oxygen bonds in aminoacyl-tRNA and related compounds. The systematic name of this enzyme class is glycine:tRNAGly ligase (AMP-forming). Other names in common use include glycyl-tRNA synthetase, glycyl-transfer ribonucleate synthetase, glycyl-transfer RNA synthetase, glycyl-transfer ribonucleic acid synthetase, and glycyl translase. This enzyme participates in glycine, serine and threonine metabolism and aminoacyl-trna biosynthesis. Template:Clear

Interactions

Glycyl-tRNA synthetase has been shown to interact with EEF1D.[4] Mutant forms of the protein associated with peripheral nerve disease have been shown to aberrantly bind to the transmembrane receptor proteins neuropilin 1[5] and Trk receptors A-C.[6]

Clinical relevance

Glycyl-tRNA synthetase has been shown to be a target of autoantibodies in the human autoimmune diseases, polymyositis or dermatomyositis.[3]

The peripheral nerve diseases Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) have been liked to dominant mutations in GARS.[7][8] CMT2D usually manifests during the teenage years, and results in muscle weakness predominantly in the hands and feet.[9] Two mouse models of CMT2D have been used to better understand the disease, identifying that the disorder is caused by a toxic gain-of-function of the mutant glycine-tRNA ligase protein.[10] The CMT2D mice display peripheral nerve axon degeneration [11][12] and defective development[13] and function[14]> of the neuromuscular junction.

References

Template:Reflist

Further reading

Template:Refbegin

Template:Refend

Template:PDB Gallery Template:Ligases CO CS and CN Template:Enzymes Template:Portal bar