Reversible diffusion

From testwiki
Revision as of 22:04, 7 March 2024 by imported>Mazewaxie (WP:GENFIXES)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, a reversible diffusion is a specific example of a reversible stochastic process. Reversible diffusions have an elegant characterization due to the Russian mathematician Andrey Nikolaevich Kolmogorov.

Kolmogorov's characterization of reversible diffusions

Let B denote a d-dimensional standard Brownian motion; let b : Rd → Rd be a Lipschitz continuous vector field. Let X : [0, +∞) × Ω → Rd be an Itō diffusion defined on a probability space (Ω, Σ, P) and solving the Itō stochastic differential equation dXt=b(Xt)dt+dBt with square-integrable initial condition, i.e. X0 ∈ L2(Ω, Σ, PRd). Then the following are equivalent:

(Of course, the condition that b be the negative of the gradient of Φ only determines Φ up to an additive constant; this constant may be chosen so that exp(−2Φ(·)) is a probability density function with integral 1.)

References