Dawson–Gärtner theorem

From testwiki
Revision as of 22:15, 28 July 2024 by imported>Cornmazes
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In mathematics, the Dawson–Gärtner theorem is a result in large deviations theory. Heuristically speaking, the Dawson–Gärtner theorem allows one to transport a large deviation principle on a “smaller” topological space to a “larger” one.

Statement of the theorem

Let (Yj)jJ be a projective system of Hausdorff topological spaces with maps pij : Yj → Yi. Let X be the projective limit (also known as the inverse limit) of the system (Yjpij)i,jJ, i.e.

X=limjJYj={y=(yj)jJY=jJYj|i<jyi=pij(yj)}.

Let (με)ε>0 be a family of probability measures on X. Assume that, for each j ∈ J, the push-forward measures (pjμε)ε>0 on Yj satisfy the large deviation principle with good rate function Ij : Yj → R ∪ {+∞}. Then the family (με)ε>0 satisfies the large deviation principle on X with good rate function I : X → R ∪ {+∞} given by

I(x)=supjJIj(pj(x)).

References