List of space groups

From testwiki
Revision as of 06:49, 13 January 2025 by imported>Bor75 (Asymmorphic)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

  • P primitive
  • I body centered (from the German Innenzentriert)
  • F face centered (from the German Flächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

  • a, b, or c: glide translation along half the lattice vector of this face
  • n: glide translation along half the diagonal of this face
  • d: glide planes with translation along a quarter of a face diagonal
  • e: two glides with the same glide plane and translation along two (different) half-lattice vectors.Template:Refn

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is 360n. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of Template:Sfrac of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of Template:Sfrac of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction nm or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form Γxy which specifies the Bravais lattice. Here x{t,m,o,q,rh,h,c} is the lattice system, and y{,b,v,f} is the centering type.[1]

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Example for point group 4/mmm (4m2m2m): the symmorphic space groups are P4/mmm (P4m2m2m, 36s) and I4/mmm (I4m2m2m, 37s).

Hemisymmorphic

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (4m2m2m): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc (P4m2c2c, 35h), P4/nbm (P4n2b2m, 36h), P4/nnc (P4n2n2c, 37h), and I4/mcm (I4m2c2m, 38h).

Asymmorphic

The remaining 103 space groups are asymmorphic. Example for point group 4/mmm (4m2m2m): P4/mbm (P4m21b2m, 54a), P42/mmc (P42m2m2c, 60a), I41/acd (I41a2c2d, 58a) - none of these groups contains the axial combination 422.

List of triclinic

Triclinic Bravais lattice
Triclinic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
1 1 1 P1 P 1 ΓtC11 1s (a/b/c)1 ()
2 Template:Overline × PTemplate:Overline P Template:Overline ΓtCi1 2s (a/b/c)2~ (2222)

List of monoclinic

Monoclinic Bravais lattice
Simple (P) Base (C)
Monoclinic crystal system
Number Point group Orbifold Short name Full name(s) Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
3 2 22 P2 P 1 2 1 P 1 1 2 ΓmC21 3s (b:(c/a)):2 (20202020) (*0*0)
4 P21 P 1 21 1 P 1 1 21 ΓmC22 1a (b:(c/a)):21 (21212121) (ׯׯ)
5 C2 C 1 2 1 B 1 1 2 ΓmbC23 4s (a+b2/b:(c/a)):2 (20202121) (*1*1), (*ׯ)
6 m * Pm P 1 m 1 P 1 1 m ΓmCs1 5s (b:(c/a))m [0] (**)
7 Pc P 1 c 1 P 1 1 b ΓmCs2 1h (b:(c/a))c~ (¯0) (*:*:), (××0)
8 Cm C 1 m 1 B 1 1 m ΓmbCs3 6s (a+b2/b:(c/a))m [1] (**:), (*×)
9 Cc C 1 c 1 B 1 1 b ΓmbCs4 2h (a+b2/b:(c/a))c~ (¯1) (*:×), (××1)
10 2/m 2* P2/m P 1 2/m 1 P 1 1 2/m ΓmC2h1 7s (b:(c/a))m:2 [20202020] [*2222)
11 P21/m P 1 21/m 1 P 1 1 21/m ΓmC2h2 2a (b:(c/a))m:21 [21212121] (22*)
12 C2/m C 1 2/m 1 B 1 1 2/m ΓmbC2h3 8s (a+b2/b:(c/a))m:2 [20202121] (*222:2), (2*¯22)
13 P2/c P 1 2/c 1 P 1 1 2/b ΓmC2h4 3h (b:(c/a))c~:2 (202022) (*2:22:2), (22*0)
14 P21/c P 1 21/c 1 P 1 1 21/b ΓmC2h5 3a (b:(c/a))c~:21 (212122) (22*:), (22×)
15 C2/c C 1 2/c 1 B 1 1 2/b ΓmbC2h6 4h (a+b2/b:(c/a))c~:2 (202122) (2*¯2:2), (22*1)

List of orthorhombic

Orthorhombic Bravais lattice
Simple (P) Body (I) Face (F) Base (A or C)
Orthorhombic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
16 222 222 P222 P 2 2 2 ΓoD21 9s (c:a:b):2:2 (*20202020)
17 P2221 P 2 2 21 ΓoD22 4a (c:a:b):21:2 (*21212121) (2020*)
18 P21212 P 21 21 2 ΓoD23 7a (c:a:b):2 21 (2020ׯ) (2121*)
19 P212121 P 21 21 21 ΓoD24 8a (c:a:b):21 21 (2121ׯ)
20 C2221 C 2 2 21 ΓobD25 5a (a+b2:c:a:b):21:2 (21*2121) (2021*)
21 C222 C 2 2 2 ΓobD26 10s (a+b2:c:a:b):2:2 (20*2020) (*20202121)
22 F222 F 2 2 2 ΓofD27 12s (a+c2/b+c2/a+b2:c:a:b):2:2 (*20212021)
23 I222 I 2 2 2 ΓovD28 11s (a+b+c2/c:a:b):2:2 (21*2020)
24 I212121 I 21 21 21 ΓovD29 6a (a+b+c2/c:a:b):2:21 (20*2121)
25 mm2 *22 Pmm2 P m m 2 ΓoC2v1 13s (c:a:b):m2 (*2222) [*0*0]
26 Pmc21 P m c 21 ΓoC2v2 9a (c:a:b):c~21 (*2:22:2) (*¯*¯), [×0×0]
27 Pcc2 P c c 2 ΓoC2v3 5h (c:a:b):c~2 (*:2:2:2:2) (*¯0*¯0)
28 Pma2 P m a 2 ΓoC2v4 6h (c:a:b):a~2 (2020*) [*0:*0:], (**0)
29 Pca21 P c a 21 ΓoC2v5 11a (c:a:b):a~21 (2121*:) (*¯:*¯:)
30 Pnc2 P n c 2 ΓoC2v6 7h (c:a:b):c~2 (2020*:) (*¯1*¯1), (*0×0)
31 Pmn21 P m n 21 ΓoC2v7 10a (c:a:b):ac~21 (2121*) (*ׯ), [×0×1]
32 Pba2 P b a 2 ΓoC2v8 9h (c:a:b):a~2 (2020×0) (*:*0)
33 Pna21 P n a 21 ΓoC2v9 12a (c:a:b):a~21 (2121×) (*:×), (××1)
34 Pnn2 P n n 2 ΓoC2v10 8h (c:a:b):ac~2 (2020×1) (*0×1)
35 Cmm2 C m m 2 ΓobC2v11 14s (a+b2:c:a:b):m2 (20*22) [*0*0:]
36 Cmc21 C m c 21 ΓobC2v12 13a (a+b2:c:a:b):c~21 (21*2:2) (*¯*¯:), [×1×1]
37 Ccc2 C c c 2 ΓobC2v13 10h (a+b2:c:a:b):c~2 (20*:2:2) (*¯0*¯1)
38 Amm2 A m m 2 ΓobC2v14 15s (b+c2/c:a:b):m2 (*222:2) [*1*1], [*×0]
39 Aem2 A b m 2 ΓobC2v15 11h (b+c2/c:a:b):m21 (*2:2:2:2) [*1:*1:], (*¯*¯0)
40 Ama2 A m a 2 ΓobC2v16 12h (b+c2/c:a:b):a~2 (2021*) (**1), [*:×1]
41 Aea2 A b a 2 ΓobC2v17 13h (b+c2/c:a:b):a~21 (2021*:) (*:*1), (*¯:*¯1)
42 Fmm2 F m m 2 ΓofC2v18 17s (a+c2/b+c2/a+b2:c:a:b):m2 (*22:2:2) [*1*1:]
43 Fdd2 F d d 2 ΓofC2v19 16h (a+c2/b+c2/a+b2:c:a:b):12ac~2 (2021×) (*1×)
44 Imm2 I m m 2 ΓovC2v20 16s (a+b+c2/c:a:b):m2 (21*22) [*×1]
45 Iba2 I b a 2 ΓovC2v21 15h (a+b+c2/c:a:b):c~2 (21*:2:2) (*¯:*¯0)
46 Ima2 I m a 2 ΓovC2v22 14h (a+b+c2/c:a:b):a~2 (20*2:2) (*¯*¯1), [*:×0]
47 2m2m2m *222 Pmmm P 2/m 2/m 2/m ΓoD2h1 18s (c:a:b)m:2m [*2222]
48 Pnnn P 2/n 2/n 2/n ΓoD2h2 19h (c:a:b)ab~:2ac~ (2*¯12020)
49 Pccm P 2/c 2/c 2/m ΓoD2h3 17h (c:a:b)m:2c~ [*:2:2:2:2] (*202022)
50 Pban P 2/b 2/a 2/n ΓoD2h4 18h (c:a:b)ab~:2a~ (2*¯02020) (*20202:2)
51 Pmma P 21/m 2/m 2/a ΓoD2h5 14a (c:a:b)a~:2m [2020*] [*2:22:2], [*2222]
52 Pnna P 2/n 21/n 2/a ΓoD2h6 17a (c:a:b)a~:2ac~ (202*¯1) (20*2:2), (2*¯2121)
53 Pmna P 2/m 2/n 21/a ΓoD2h7 15a (c:a:b)a~:21ac~ [2020*:] (*212122), (20*22)
54 Pcca P 21/c 2/c 2/a ΓoD2h8 16a (c:a:b)a~:2c~ (202*¯0) (*2:2:2:2), (*21212:2)
55 Pbam P 21/b 21/a 2/m ΓoD2h9 22a (c:a:b)m:2a~ [2020×0] (*22:22)
56 Pccn P 21/c 21/c 2/n ΓoD2h10 27a (c:a:b)ab~:2c~ (2*¯:2:2) (212*¯0)
57 Pbcm P 2/b 21/c 21/m ΓoD2h11 23a (c:a:b)m:21c~ (202*¯) (*2:22:2), [2121*:]
58 Pnnm P 21/n 21/n 2/m ΓoD2h12 25a (c:a:b)m:2ac~ [2020×1] (21*22)
59 Pmmn P 21/m 21/m 2/n ΓoD2h13 24a (c:a:b)ab~:2m (2*¯22) [2121*]
60 Pbcn P 21/b 2/c 21/n ΓoD2h14 26a (c:a:b)ab~:21c~ (202*¯:) (21*2:2), (212*¯1)
61 Pbca P 21/b 21/c 21/a ΓoD2h15 29a (c:a:b)a~:21c~ (212*¯:)
62 Pnma P 21/n 21/m 21/a ΓoD2h16 28a (c:a:b)a~:21m (212*¯) (2*¯2:2), [2121×]
63 Cmcm C 2/m 2/c 21/m ΓobD2h17 18a (a+b2:c:a:b)m:21c~ [2021*] (*222:2), [21*2:2]
64 Cmce C 2/m 2/c 21/a ΓobD2h18 19a (a+b2:c:a:b)a~:21c~ [2021*:] (*22:2:2), (*2122:2)
65 Cmmm C 2/m 2/m 2/m ΓobD2h19 19s (a+b2:c:a:b)m:2m [20*22] [*222:2]
66 Cccm C 2/c 2/c 2/m ΓobD2h20 20h (a+b2:c:a:b)m:2c~ [20*:2:2] (*202122)
67 Cmme C 2/m 2/m 2/e ΓobD2h21 21h (a+b2:c:a:b)a~:2m (*20222) [*2:2:2:2]
68 Ccce C 2/c 2/c 2/e ΓobD2h22 22h (a+b2:c:a:b)a~:2c~ (*202:2:2) (*20212:2)
69 Fmmm F 2/m 2/m 2/m ΓofD2h23 21s (a+c2/b+c2/a+b2:c:a:b)m:2m [*22:2:2]
70 Fddd F 2/d 2/d 2/d ΓofD2h24 24h (a+c2/b+c2/a+b2:c:a:b)12ab~:212ac~ (2*¯2021)
71 Immm I 2/m 2/m 2/m ΓovD2h25 20s (a+b+c2/c:a:b)m:2m [21*22]
72 Ibam I 2/b 2/a 2/m ΓovD2h26 23h (a+b+c2/c:a:b)m:2c~ [21*:2:2] (*2022:2)
73 Ibca I 2/b 2/c 2/a ΓovD2h27 21a (a+b+c2/c:a:b)a~:2c~ (*212:2:2)
74 Imma I 2/m 2/m 2/a ΓovD2h28 20a (a+b+c2/c:a:b)a~:2m (*21222) [20*2:2]

List of tetragonal

Tetragonal Bravais lattice
Simple (P) Body (I)
Tetragonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
75 4 44 P4 P 4 ΓqC41 22s (c:a:a):4 (404020)
76 P41 P 41 ΓqC42 30a (c:a:a):41 (414121)
77 P42 P 42 ΓqC43 33a (c:a:a):42 (424220)
78 P43 P 43 ΓqC44 31a (c:a:a):43 (414121)
79 I4 I 4 ΓqvC45 23s (a+b+c2/c:a:a):4 (424021)
80 I41 I 41 ΓqvC46 32a (a+b+c2/c:a:a):41 (434120)
81 Template:Overline 2× PTemplate:Overline P Template:Overline ΓqS41 26s (c:a:a):4~ (4420)
82 ITemplate:Overline I Template:Overline ΓqvS42 27s (a+b+c2/c:a:a):4~ (4421)
83 4/m 4* P4/m P 4/m ΓqC4h1 28s (c:a:a)m:4 [404020]
84 P42/m P 42/m ΓqC4h2 41a (c:a:a)m:42 [424220]
85 P4/n P 4/n ΓqC4h3 29h (c:a:a)ab~:4 (4402)
86 P42/n P 42/n ΓqC4h4 42a (c:a:a)ab~:42 (4422)
87 I4/m I 4/m ΓqvC4h5 29s (a+b+c2/c:a:a)m:4 [424021]
88 I41/a I 41/a ΓqvC4h6 40a (a+b+c2/c:a:a)a~:41 (4412)
89 422 224 P422 P 4 2 2 ΓqD41 30s (c:a:a):4:2 (*404020)
90 P4212 P4212 ΓqD42 43a (c:a:a):4 21 (40*20)
91 P4122 P 41 2 2 ΓqD43 44a (c:a:a):41:2 (*414121)
92 P41212 P 41 21 2 ΓqD44 48a (c:a:a):41 21 (41*21)
93 P4222 P 42 2 2 ΓqD45 47a (c:a:a):42:2 (*424220)
94 P42212 P 42 21 2 ΓqD46 50a (c:a:a):42 21 (42*20)
95 P4322 P 43 2 2 ΓqD47 45a (c:a:a):43:2 (*414121)
96 P43212 P 43 21 2 ΓqD48 49a (c:a:a):43 21 (41*21)
97 I422 I 4 2 2 ΓqvD49 31s (a+b+c2/c:a:a):4:2 (*424021)
98 I4122 I 41 2 2 ΓqvD410 46a (a+b+c2/c:a:a):4:21 (*434120)
99 4mm *44 P4mm P 4 m m ΓqC4v1 24s (c:a:a):4m (*442)
100 P4bm P 4 b m ΓqC4v2 26h (c:a:a):4a~ (40*2)
101 P42cm P 42 c m ΓqC4v3 37a (c:a:a):42c~ (*:44:2)
102 P42nm P 42 n m ΓqC4v4 38a (c:a:a):42ac~ (42*2)
103 P4cc P 4 c c ΓqC4v5 25h (c:a:a):4c~ (*:4:4:2)
104 P4nc P 4 n c ΓqC4v6 27h (c:a:a):4ac~ (40*:2)
105 P42mc P 42 m c ΓqC4v7 36a (c:a:a):42m (*4:42)
106 P42bc P 42 b c ΓqC4v8 39a (c:a:a):4a~ (42*:2)
107 I4mm I 4 m m ΓqvC4v9 25s (a+b+c2/c:a:a):4m (*44:2)
108 I4cm I 4 c m ΓqvC4v10 28h (a+b+c2/c:a:a):4c~ (*4:4:2)
109 I41md I 41 m d ΓqvC4v11 34a (a+b+c2/c:a:a):41m (41*2)
110 I41cd I 41 c d ΓqvC4v12 35a (a+b+c2/c:a:a):41c~ (41*:2)
111 Template:Overline2m 2*2 PTemplate:Overline2m P Template:Overline 2 m ΓqD2d1 32s (c:a:a):4~:2 (*4420)
112 PTemplate:Overline2c P Template:Overline 2 c ΓqD2d2 30h (c:a:a):4~ 2 (*4:420)
113 PTemplate:Overline21m P Template:Overline 21 m ΓqD2d3 52a (c:a:a):4~ab~ (4*¯2)
114 PTemplate:Overline21c P Template:Overline 21 c ΓqD2d4 53a (c:a:a):4~abc~ (4*¯:2)
115 PTemplate:Overlinem2 P Template:Overline m 2 ΓqD2d5 33s (c:a:a):4~m (*442)
116 PTemplate:Overlinec2 P Template:Overline c 2 ΓqD2d6 31h (c:a:a):4~c~ (*:44:2)
117 PTemplate:Overlineb2 P Template:Overline b 2 ΓqD2d7 32h (c:a:a):4~a~ (4*¯020)
118 PTemplate:Overlinen2 P Template:Overline n 2 ΓqD2d8 33h (c:a:a):4~ac~ (4*¯120)
119 ITemplate:Overlinem2 I Template:Overline m 2 ΓqvD2d9 35s (a+b+c2/c:a:a):4~m (*4421)
120 ITemplate:Overlinec2 I Template:Overline c 2 ΓqvD2d10 34h (a+b+c2/c:a:a):4~c~ (*4:421)
121 ITemplate:Overline2m I Template:Overline 2 m ΓqvD2d11 34s (a+b+c2/c:a:a):4~:2 (*44:2)
122 ITemplate:Overline2d I Template:Overline 2 d ΓqvD2d12 51a (a+b+c2/c:a:a):4~12abc~ (4*¯21)
123 4/m 2/m 2/m *224 P4/mmm P 4/m 2/m 2/m ΓqD4h1 36s (c:a:a)m:4m [*442]
124 P4/mcc P 4/m 2/c 2/c ΓqD4h2 35h (c:a:a)m:4c~ [*:4:4:2]
125 P4/nbm P 4/n 2/b 2/m ΓqD4h3 36h (c:a:a)ab~:4a~ (*4042)
126 P4/nnc P 4/n 2/n 2/c ΓqD4h4 37h (c:a:a)ab~:4ac~ (*404:2)
127 P4/mbm P 4/m 21/b 2/m ΓqD4h5 54a (c:a:a)m:4a~ [40*2]
128 P4/mnc P 4/m 21/n 2/c ΓqD4h6 56a (c:a:a)m:4ac~ [40*:2]
129 P4/nmm P 4/n 21/m 2/m ΓqD4h7 55a (c:a:a)ab~:4m (*442)
130 P4/ncc P 4/n 21/c 2/c ΓqD4h8 57a (c:a:a)ab~:4c~ (*4:4:2)
131 P42/mmc P 42/m 2/m 2/c ΓqD4h9 60a (c:a:a)m:42m [*4:42]
132 P42/mcm P 42/m 2/c 2/m ΓqD4h10 61a (c:a:a)m:42c~ [*:44:2]
133 P42/nbc P 42/n 2/b 2/c ΓqD4h11 63a (c:a:a)ab~:42a~ (*424:2)
134 P42/nnm P 42/n 2/n 2/m ΓqD4h12 62a (c:a:a)ab~:42ac~ (*4242)
135 P42/mbc P 42/m 21/b 2/c ΓqD4h13 66a (c:a:a)m:42a~ [42*:2]
136 P42/mnm P 42/m 21/n 2/m ΓqD4h14 65a (c:a:a)m:42ac~ [42*2]
137 P42/nmc P 42/n 21/m 2/c ΓqD4h15 67a (c:a:a)ab~:42m (*44:2)
138 P42/ncm P 42/n 21/c 2/m ΓqD4h16 65a (c:a:a)ab~:42c~ (*4:42)
139 I4/mmm I 4/m 2/m 2/m ΓqvD4h17 37s (a+b+c2/c:a:a)m:4m [*44:2]
140 I4/mcm I 4/m 2/c 2/m ΓqvD4h18 38h (a+b+c2/c:a:a)m:4c~ [*4:4:2]
141 I41/amd I 41/a 2/m 2/d ΓqvD4h19 59a (a+b+c2/c:a:a)a~:41m (*4142)
142 I41/acd I 41/a 2/c 2/d ΓqvD4h20 58a (a+b+c2/c:a:a)a~:41c~ (*414:2)

List of trigonal

Trigonal Bravais lattice
Rhombohedral (R) Hexagonal (P)
Trigonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
143 3 33 P3 P 3 ΓhC31 38s (c:(a/a)):3 (303030)
144 P31 P 31 ΓhC32 68a (c:(a/a)):31 (313131)
145 P32 P 32 ΓhC33 69a (c:(a/a)):32 (313131)
146 R3 R 3 ΓrhC34 39s (a/a/a)/3 (303132)
147 Template:Overline 3× PTemplate:Overline P Template:Overline ΓhC3i1 51s (c:(a/a)):6~ (6302)
148 RTemplate:Overline R Template:Overline ΓrhC3i2 52s (a/a/a)/6~ (6312)
149 32 223 P312 P 3 1 2 ΓhD31 45s (c:(a/a)):2:3 (*303030)
150 P321 P 3 2 1 ΓhD32 44s (c:(a/a))2:3 (30*30)
151 P3112 P 31 1 2 ΓhD33 72a (c:(a/a)):2:31 (*313131)
152 P3121 P 31 2 1 ΓhD34 70a (c:(a/a))2:31 (31*31)
153 P3212 P 32 1 2 ΓhD35 73a (c:(a/a)):2:32 (*313131)
154 P3221 P 32 2 1 ΓhD36 71a (c:(a/a))2:32 (31*31)
155 R32 R 3 2 ΓrhD37 46s (a/a/a)/3:2 (*303132)
156 3m *33 P3m1 P 3 m 1 ΓhC3v1 40s (c:(a/a)):m3 (*333)
157 P31m P 3 1 m ΓhC3v2 41s (c:(a/a))m3 (30*3)
158 P3c1 P 3 c 1 ΓhC3v3 39h (c:(a/a)):c~:3 (*:3:3:3)
159 P31c P 3 1 c ΓhC3v4 40h (c:(a/a))c~:3 (30*:3)
160 R3m R 3 m ΓrhC3v5 42s (a/a/a)/3m (31*3)
161 R3c R 3 c ΓrhC3v6 41h (a/a/a)/3c~ (31*:3)
162 Template:Overline 2/m 2*3 PTemplate:Overline1m P Template:Overline 1 2/m ΓhD3d1 56s (c:(a/a))m6~ (*6302)
163 PTemplate:Overline1c P Template:Overline 1 2/c ΓhD3d2 46h (c:(a/a))c~6~ (*:6302)
164 PTemplate:Overlinem1 P Template:Overline 2/m 1 ΓhD3d3 55s (c:(a/a)):m6~ (*632)
165 PTemplate:Overlinec1 P Template:Overline 2/c 1 ΓhD3d4 45h (c:(a/a)):c~6~ (*6:3:2)
166 RTemplate:Overlinem R Template:Overline 2/m ΓrhD3d5 57s (a/a/a)/6~m (*6312)
167 RTemplate:Overlinec R Template:Overline 2/c ΓrhD3d6 47h (a/a/a)/6~c~ (*:6312)

List of hexagonal

Hexagonal Bravais lattice
Hexagonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
168 6 66 P6 P 6 ΓhC61 49s (c:(a/a)):6 (603020)
169 P61 P 61 ΓhC62 74a (c:(a/a)):61 (613121)
170 P65 P 65 ΓhC63 75a (c:(a/a)):65 (613121)
171 P62 P 62 ΓhC64 76a (c:(a/a)):62 (623220)
172 P64 P 64 ΓhC65 77a (c:(a/a)):64 (623220)
173 P63 P 63 ΓhC66 78a (c:(a/a)):63 (633021)
174 Template:Overline 3* PTemplate:Overline P Template:Overline ΓhC3h1 43s (c:(a/a)):3:m [303030]
175 6/m 6* P6/m P 6/m ΓhC6h1 53s (c:(a/a))m:6 [603020]
176 P63/m P 63/m ΓhC6h2 81a (c:(a/a))m:63 [633021]
177 622 226 P622 P 6 2 2 ΓhD61 54s (c:(a/a))2:6 (*603020)
178 P6122 P 61 2 2 ΓhD62 82a (c:(a/a))2:61 (*613121)
179 P6522 P 65 2 2 ΓhD63 83a (c:(a/a))2:65 (*613121)
180 P6222 P 62 2 2 ΓhD64 84a (c:(a/a))2:62 (*623220)
181 P6422 P 64 2 2 ΓhD65 85a (c:(a/a))2:64 (*623220)
182 P6322 P 63 2 2 ΓhD66 86a (c:(a/a))2:63 (*633021)
183 6mm *66 P6mm P 6 m m ΓhC6v1 50s (c:(a/a)):m6 (*632)
184 P6cc P 6 c c ΓhC6v2 44h (c:(a/a)):c~6 (*:6:3:2)
185 P63cm P 63 c m ΓhC6v3 80a (c:(a/a)):c~63 (*6:3:2)
186 P63mc P 63 m c ΓhC6v4 79a (c:(a/a)):m63 (*:632)
187 Template:Overlinem2 *223 PTemplate:Overlinem2 P Template:Overline m 2 ΓhD3h1 48s (c:(a/a)):m3:m [*333]
188 PTemplate:Overlinec2 P Template:Overline c 2 ΓhD3h2 43h (c:(a/a)):c~3:m [*:3:3:3]
189 PTemplate:Overline2m P Template:Overline 2 m ΓhD3h3 47s (c:(a/a))m:3m [30*3]
190 PTemplate:Overline2c P Template:Overline 2 c ΓhD3h4 42h (c:(a/a))m:3c~ [30*:3]
191 6/m 2/m 2/m *226 P6/mmm P 6/m 2/m 2/m ΓhD6h1 58s (c:(a/a))m:6m [*632]
192 P6/mcc P 6/m 2/c 2/c ΓhD6h2 48h (c:(a/a))m:6c~ [*:6:3:2]
193 P63/mcm P 63/m 2/c 2/m ΓhD6h3 87a (c:(a/a))m:63c~ [*6:3:2]
194 P63/mmc P 63/m 2/m 2/c ΓhD6h4 88a (c:(a/a))m:63m [*:632]

List of cubic

Cubic Bravais lattice
Simple (P) Body centered (I) Face centered (F)

Template:Gallery

Cubic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Conway Fibrifold (preserving z) Fibrifold (preserving x, y, z)
195 23 332 P23 P 2 3 ΓcT1 59s (a:a:a):2/3 2 (*20202020):3 (*20202020):3
196 F23 F 2 3 ΓcfT2 61s (a+c2/b+c2/a+b2:a:a:a):2/3 1 (*20212021):3 (*20212021):3
197 I23 I 2 3 ΓcvT3 60s (a+b+c2/a:a:a):2/3 4 (21*2020):3 (21*2020):3
198 P213 P 21 3 ΓcT4 89a (a:a:a):21/3 1/4 (2121ׯ):3 (2121ׯ):3
199 I213 I 21 3 ΓcvT5 90a (a+b+c2/a:a:a):21/3 2/4 (20*2121):3 (20*2121):3
200 2/m Template:Overline 3*2 PmTemplate:Overline P 2/m Template:Overline ΓcTh1 62s (a:a:a)m/6~ 4 [*2222]:3 [*2222]:3
201 PnTemplate:Overline P 2/n Template:Overline ΓcTh2 49h (a:a:a)ab~/6~ 4+ (2*¯12020):3 (2*¯12020):3
202 FmTemplate:Overline F 2/m Template:Overline ΓcfTh3 64s (a+c2/b+c2/a+b2:a:a:a)m/6~ 2 [*22:2:2]:3 [*22:2:2]:3
203 FdTemplate:Overline F 2/d Template:Overline ΓcfTh4 50h (a+c2/b+c2/a+b2:a:a:a)12ab~/6~ 2+ (2*¯2021):3 (2*¯2021):3
204 ImTemplate:Overline I 2/m Template:Overline ΓcvTh5 63s (a+b+c2/a:a:a)m/6~ 8 [21*22]:3 [21*22]:3
205 PaTemplate:Overline P 21/a Template:Overline ΓcTh6 91a (a:a:a)a~/6~ 2/4 (212*¯:):3 (212*¯:):3
206 IaTemplate:Overline I 21/a Template:Overline ΓcvTh7 92a (a+b+c2/a:a:a)a~/6~ 4/4 (*212:2:2):3 (*212:2:2):3
207 432 432 P432 P 4 3 2 ΓcO1 68s (a:a:a):4/3 4 (*404020):3 (*20202020):6
208 P4232 P 42 3 2 ΓcO2 98a (a:a:a):42//3 4+ (*424220):3 (*20202020):6
209 F432 F 4 3 2 ΓcfO3 70s (a+c2/b+c2/a+b2:a:a:a):4/3 2 (*424021):3 (*20212021):6
210 F4132 F 41 3 2 ΓcfO4 97a (a+c2/b+c2/a+b2:a:a:a):41//3 2+ (*434120):3 (*20212021):6
211 I432 I 4 3 2 ΓcvO5 69s (a+b+c2/a:a:a):4/3 8+ (424021):3 (21*2020):6
212 P4332 P 43 3 2 ΓcO6 94a (a:a:a):43//3 2+/4 (41*21):3 (2121ׯ):6
213 P4132 P 41 3 2 ΓcO7 95a (a:a:a):41//3 2+/4 (41*21):3 (2121ׯ):6
214 I4132 I 41 3 2 ΓcvO8 96a (a+b+c2/:a:a:a):41//3 4+/4 (*434120):3 (20*2121):6
215 Template:Overline3m *332 PTemplate:Overline3m P Template:Overline 3 m ΓcTd1 65s (a:a:a):4~/3 2:2 (*4420):3 (*20202020):6
216 FTemplate:Overline3m F Template:Overline 3 m ΓcfTd2 67s (a+c2/b+c2/a+b2:a:a:a):4~/3 1:2 (*4421):3 (*20212021):6
217 ITemplate:Overline3m I Template:Overline 3 m ΓcvTd3 66s (a+b+c2/a:a:a):4~/3 4:2 (*44:2):3 (21*2020):6
218 PTemplate:Overline3n P Template:Overline 3 n ΓcTd4 51h (a:a:a):4~//3 4 (*4:420):3 (*20202020):6
219 FTemplate:Overline3c F Template:Overline 3 c ΓcfTd5 52h (a+c2/b+c2/a+b2:a:a:a):4~//3 2 (*4:421):3 (*20212021):6
220 ITemplate:Overline3d I Template:Overline 3 d ΓcvTd6 93a (a+b+c2/a:a:a):4~//3 4/4 (4*¯21):3 (20*2121):6
221 4/m Template:Overline 2/m *432 PmTemplate:Overlinem P 4/m Template:Overline 2/m ΓcOh1 71s (a:a:a):4/6~m 4:2 [*442]:3 [*2222]:6
222 PnTemplate:Overlinen P 4/n Template:Overline 2/n ΓcOh2 53h (a:a:a):4/6~abc~ 8 (*404:2):3 (2*¯12020):6
223 PmTemplate:Overlinen P 42/m Template:Overline 2/n ΓcOh3 102a (a:a:a):42//6~abc~ 8 [*4:42]:3 [*2222]:6
224 PnTemplate:Overlinem P 42/n Template:Overline 2/m ΓcOh4 103a (a:a:a):42//6~m 4+:2 (*4242):3 (2*¯12020):6
225 FmTemplate:Overlinem F 4/m Template:Overline 2/m ΓcfOh5 73s (a+c2/b+c2/a+b2:a:a:a):4/6~m 2:2 [*44:2]:3 [*22:2:2]:6
226 FmTemplate:Overlinec F 4/m Template:Overline 2/c ΓcfOh6 54h (a+c2/b+c2/a+b2:a:a:a):4/6~c~ 4 [*4:4:2]:3 [*22:2:2]:6
227 FdTemplate:Overlinem F 41/d Template:Overline 2/m ΓcfOh7 100a (a+c2/b+c2/a+b2:a:a:a):41//6~m 2+:2 (*4142):3 (2*¯2021):6
228 FdTemplate:Overlinec F 41/d Template:Overline 2/c ΓcfOh8 101a (a+c2/b+c2/a+b2:a:a:a):41//6~c~ 4++ (*414:2):3 (2*¯2021):6
229 ImTemplate:Overlinem I 4/m Template:Overline 2/m ΓcvOh9 72s (a+b+c2/a:a:a):4/6~m 8:2 [*44:2]:3 [21*22]:6
230 IaTemplate:Overlined I 41/a Template:Overline 2/d ΓcvOh10 99a (a+b+c2/a:a:a):41//6~12abc~ 8/4 (*414:2):3 (*212:2:2):6

Notes

Template:Reflist

References

Template:Reflist

Template:Commons category