P-wave modulus

From testwiki
Revision as of 18:14, 30 July 2023 by imported>Ruud Buitelaar (References: added link to Gary M. Mavko)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

There are two kinds of seismic body waves in solids, pressure waves (P-waves) and shear waves. In linear elasticity, the P-wave modulus M, also known as the longitudinal modulus, or the constrained modulus, is one of the elastic moduli available to describe isotropic homogeneous materials.

It is defined as the ratio of axial stress to axial strain in a uniaxial strain state. This occurs when expansion in the transverse direction is prevented by the inertia of neighboring material, such as in an earthquake, or underwater seismic blast.

σzz=Mϵzz

where all the other strains ϵ** are zero.

This is equivalent to stating that

Mx=ρxVP2,

where VP is the velocity of a P-wave and ρ is the density of the material through which the wave is propagating.


References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). Template:ISBN

Template:Navbox

Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae K= E= λ= G= ν= M= Notes
(K,E) 3K(3KE)9KE 3KE9KE 3KE6K 3K(3K+E)9KE
(K,λ) 9K(Kλ)3Kλ 3(Kλ)2 λ3Kλ 3K2λ
(K,G) 9KG3K+G K2G3 3K2G2(3K+G) K+4G3
(K,ν) 3K(12ν) 3Kν1+ν 3K(12ν)2(1+ν) 3K(1ν)1+ν
(K,M) 9K(MK)3K+M 3KM2 3(MK)4 3KM3K+M
(E,λ) E+3λ+R6 E3λ+R4 2λE+λ+R Eλ+R2 R=E2+9λ2+2Eλ
(E,G) EG3(3GE) G(E2G)3GE E2G1 G(4GE)3GE
(E,ν) E3(12ν) Eν(1+ν)(12ν) E2(1+ν) E(1ν)(1+ν)(12ν)
(E,M) 3ME+S6 ME+S4 3M+ES8 EM+S4M S=±E2+9M210EM

There are two valid solutions.
The plus sign leads to ν0.

The minus sign leads to ν0.

(λ,G) λ+2G3 G(3λ+2G)λ+G λ2(λ+G) λ+2G
(λ,ν) λ(1+ν)3ν λ(1+ν)(12ν)ν λ(12ν)2ν λ(1ν)ν Cannot be used when ν=0λ=0
(λ,M) M+2λ3 (Mλ)(M+2λ)M+λ Mλ2 λM+λ
(G,ν) 2G(1+ν)3(12ν) 2G(1+ν) 2Gν12ν 2G(1ν)12ν
(G,M) M4G3 G(3M4G)MG M2G M2G2M2G
(ν,M) M(1+ν)3(1ν) M(1+ν)(12ν)1ν Mν1ν M(12ν)2(1ν)
2D formulae K2D= E2D= λ2D= G2D= ν2D= M2D= Notes
(K2D,E2D) 2K2D(2K2DE2D)4K2DE2D K2DE2D4K2DE2D 2K2DE2D2K2D 4K2D24K2DE2D
(K2D,λ2D) 4K2D(K2Dλ2D)2K2Dλ2D K2Dλ2D λ2D2K2Dλ2D 2K2Dλ2D
(K2D,G2D) 4K2DG2DK2D+G2D K2DG2D K2DG2DK2D+G2D K2D+G2D
(K2D,ν2D) 2K2D(1ν2D) 2K2Dν2D1+ν2D K2D(1ν2D)1+ν2D 2K2D1+ν2D
(E2D,G2D) E2DG2D4G2DE2D 2G2D(E2D2G2D)4G2DE2D E2D2G2D1 4G2D24G2DE2D
(E2D,ν2D) E2D2(1ν2D) E2Dν2D(1+ν2D)(1ν2D) E2D2(1+ν2D) E2D(1+ν2D)(1ν2D)
(λ2D,G2D) λ2D+G2D 4G2D(λ2D+G2D)λ2D+2G2D λ2Dλ2D+2G2D λ2D+2G2D
(λ2D,ν2D) λ2D(1+ν2D)2ν2D λ2D(1+ν2D)(1ν2D)ν2D λ2D(1ν2D)2ν2D λ2Dν2D Cannot be used when ν2D=0λ2D=0
(G2D,ν2D) G2D(1+ν2D)1ν2D 2G2D(1+ν2D) 2G2Dν2D1ν2D 2G2D1ν2D
(G2D,M2D) M2DG2D 4G2D(M2DG2D)M2D M2D2G2D M2D2G2DM2D




Template:Materials-sci-stub