Minimal polynomial (field theory)
Template:Use American English Template:Short description Template:For
In field theory, a branch of mathematics, the minimal polynomial of an element Template:Math of an extension field of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the smaller field, such that Template:Math is a root of the polynomial. If the minimal polynomial of Template:Math exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1.
More formally, a minimal polynomial is defined relative to a field extension Template:Math and an element of the extension field Template:Math. The minimal polynomial of an element, if it exists, is a member of Template:Math, the ring of polynomials in the variable Template:Math with coefficients in Template:Math. Given an element Template:Math of Template:Math, let Template:Math be the set of all polynomials Template:Math in Template:Math such that Template:Math. The element Template:Math is called a root or zero of each polynomial in Template:Math
More specifically, Jα is the kernel of the ring homomorphism from F[x] to E which sends polynomials g to their value g(α) at the element α. Because it is the kernel of a ring homomorphism, Jα is an ideal of the polynomial ring F[x]: it is closed under polynomial addition and subtraction (hence containing the zero polynomial), as well as under multiplication by elements of F (which is scalar multiplication if F[x] is regarded as a vector space over F).
The zero polynomial, all of whose coefficients are 0, is in every Template:Math since Template:Math for all Template:Math and Template:Math. This makes the zero polynomial useless for classifying different values of Template:Math into types, so it is excepted. If there are any non-zero polynomials in Template:Math, i.e. if the latter is not the zero ideal, then Template:Math is called an algebraic element over Template:Math, and there exists a monic polynomial of least degree in Template:Math. This is the minimal polynomial of Template:Math with respect to Template:Math. It is unique and irreducible over Template:Math. If the zero polynomial is the only member of Template:Math, then Template:Math is called a transcendental element over Template:Math and has no minimal polynomial with respect to Template:Math.
Minimal polynomials are useful for constructing and analyzing field extensions. When Template:Math is algebraic with minimal polynomial Template:Math, the smallest field that contains both Template:Math and Template:Math is isomorphic to the quotient ring Template:Math, where Template:Math is the ideal of Template:Math generated by Template:Math. Minimal polynomials are also used to define conjugate elements.
Definition
Let E/F be a field extension, α an element of E, and F[x] the ring of polynomials in x over F. The element α has a minimal polynomial when α is algebraic over F, that is, when f(α) = 0 for some non-zero polynomial f(x) in F[x]. Then the minimal polynomial of α is defined as the monic polynomial of least degree among all polynomials in F[x] having α as a root.
Properties
Throughout this section, let E/F be a field extension over F as above, let α ∈ E be an algebraic element over F and let Jα be the ideal of polynomials vanishing on α.
Uniqueness
The minimal polynomial f of α is unique.
To prove this, suppose that f and g are monic polynomials in Jα of minimal degree n > 0. We have that r := f−g ∈ Jα (because the latter is closed under addition/subtraction) and that m := deg(r) < n (because the polynomials are monic of the same degree). If r is not zero, then r / cm (writing cm ∈ F for the non-zero coefficient of highest degree in r) is a monic polynomial of degree m < n such that r / cm ∈ Jα (because the latter is closed under multiplication/division by non-zero elements of F), which contradicts our original assumption of minimality for n. We conclude that 0 = r = f − g, i.e. that f = g.
Irreducibility
The minimal polynomial f of α is irreducible, i.e. it cannot be factorized as f = gh for two polynomials g and h of strictly lower degree.
To prove this, first observe that any factorization f = gh implies that either g(α) = 0 or h(α) = 0, because f(α) = 0 and F is a field (hence also an integral domain). Choosing both g and h to be of degree strictly lower than f would then contradict the minimality requirement on f, so f must be irreducible.
Minimal polynomial generates Jα
The minimal polynomial f of α generates the ideal Jα, i.e. every g in Jα can be factorized as g=fh for some h' in F[x].
To prove this, it suffices to observe that F[x] is a principal ideal domain, because F is a field: this means that every ideal I in F[x], Jα amongst them, is generated by a single element f. With the exception of the zero ideal I = {0}, the generator f must be non-zero and it must be the unique polynomial of minimal degree, up to a factor in F (because the degree of fg is strictly larger than that of f whenever g is of degree greater than zero). In particular, there is a unique monic generator f, and all generators must be irreducible. When I is chosen to be Jα, for α algebraic over F, then the monic generator f is the minimal polynomial of α.
Examples
Minimal polynomial of a Galois field extension
Given a Galois field extension
the minimal polynomial of any
not in
can be computed as
if
has no stabilizers in the Galois action. Since it is irreducible, which can be deduced by looking at the roots of
, it is the minimal polynomial. Note that the same kind of formula can be found by replacing
with
where
is the stabilizer group of
. For example, if
then its stabilizer is
, hence
is its minimal polynomial.
Quadratic field extensions
If F = Q, E = R, α = Template:Radic, then the minimal polynomial for α is a(x) = x2 − 2. The base field F is important as it determines the possibilities for the coefficients of a(x). For instance, if we take F = R, then the minimal polynomial for α = Template:Radic is a(x) = x − Template:Radic.
Q(Template:Radic )
In general, for the quadratic extension given by a square-free
, computing the minimal polynomial of an element
can be found using Galois theory. Then
in particular, this implies
and
. This can be used to determine
through a series of relations using modular arithmetic.
Biquadratic field extensions
If α = Template:Radic + Template:Radic, then the minimal polynomial in Q[x] is a(x) = x4 − 10x2 + 1 = (x − Template:Radic − Template:Radic)(x + Template:Radic − Template:Radic)(x − Template:Radic + Template:Radic)(x + Template:Radic + Template:Radic).
Notice if then the Galois action on stabilizes . Hence the minimal polynomial can be found using the quotient group .
Roots of unity
The minimal polynomials in Q[x] of roots of unity are the cyclotomic polynomials. The roots of the [[minimal polynomial of 2cos(2pi/n)|minimal polynomial of 2cos(2Template:Pi/n)]] are twice the real part of the primitive roots of unity.
Swinnerton-Dyer polynomials
The minimal polynomial in Q[x] of the sum of the square roots of the first n prime numbers is constructed analogously, and is called a Swinnerton-Dyer polynomial.
See also
References
- Template:MathWorld
- Template:PlanetMath
- Pinter, Charles C. A Book of Abstract Algebra. Dover Books on Mathematics Series. Dover Publications, 2010, p. 270–273. Template:Isbn