Kernel regression

From testwiki
Revision as of 08:54, 4 June 2024 by imported>David Eppstein (fix misplaced cite)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Distinguish Template:Short description In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y.

In any nonparametric regression, the conditional expectation of a variable Y relative to a variable X may be written:

E(YX)=m(X)

where m is an unknown function.

Nadaraya–Watson kernel regression

Nadaraya and Watson, both in 1964, proposed to estimate m as a locally weighted average, using a kernel as a weighting function.[1][2][3] The Nadaraya–Watson estimator is:

m^h(x)=i=1nKh(xxi)yii=1nKh(xxi)

where Kh(t)=1hK(th) is a kernel with a bandwidth h such that K() is of order at least 1, that is uK(u)du=0.

Derivation

Starting with the definition of conditional expectation,

E(YX=x)=yf(yx)dy=yf(x,y)f(x)dy

we estimate the joint distributions f(x,y) and f(x) using kernel density estimation with a kernel K:

f^(x,y)=1ni=1nKh(xxi)Kh(yyi),
f^(x)=1ni=1nKh(xxi),

We get:

E^(YX=x)=yf^(x,y)f^(x)dy,=yi=1nKh(xxi)Kh(yyi)j=1nKh(xxj)dy,=i=1nKh(xxi)yKh(yyi)dyj=1nKh(xxj),=i=1nKh(xxi)yij=1nKh(xxj),

which is the Nadaraya–Watson estimator.

Priestley–Chao kernel estimator

m^PC(x)=h1i=2n(xixi1)K(xxih)yi

where h is the bandwidth (or smoothing parameter).

Gasser–Müller kernel estimator

m^GM(x)=h1i=1n[si1siK(xuh)du]yi

where si=xi1+xi2.[4]

Example

Estimated regression function.

This example is based upon Canadian cross-section wage data consisting of a random sample taken from the 1971 Canadian Census Public Use Tapes for male individuals having common education (grade 13). There are 205 observations in total.Template:Cn

The figure to the right shows the estimated regression function using a second order Gaussian kernel along with asymptotic variability bounds. Template:Clear

Script for example

The following commands of the R programming language use the npreg() function to deliver optimal smoothing and to create the figure given above. These commands can be entered at the command prompt via cut and paste.

install.packages("np")
library(np) # non parametric library
data(cps71)
attach(cps71)

m <- npreg(logwage~age)

plot(m, plot.errors.method="asymptotic",
     plot.errors.style="band",
     ylim=c(11, 15.2))

points(age, logwage, cex=.25)
detach(cps71)

According to David Salsburg, the algorithms used in kernel regression were independently developed and used in fuzzy systems: "Coming up with almost exactly the same computer algorithm, fuzzy systems and kernel density-based regressions appear to have been developed completely independently of one another."[5]

Statistical implementation

See also

References

Template:Reflist

Further reading