Oriented projective geometry
Template:No footnotes Template:Expert needed Oriented projective geometry is an oriented version of real projective geometry.
Whereas the real projective plane describes the set of all unoriented lines through the origin in R3, the oriented projective plane describes lines with a given orientation. There are applications in computer graphics and computer vision where it is necessary to distinguish between rays light being emitted or absorbed by a point.
Elements in an oriented projective space are defined using signed homogeneous coordinates. Let be the set of elements of excluding the origin.
- Oriented projective line, : , with the equivalence relation for all .
- Oriented projective plane, : , with for all .
These spaces can be viewed as extensions of euclidean space. can be viewed as the union of two copies of , the sets (x,1) and (x,-1), plus two additional points at infinity, (1,0) and (-1,0). Likewise can be viewed as two copies of , (x,y,1) and (x,y,-1), plus one copy of (x,y,0).
An alternative way to view the spaces is as points on the circle or sphere, given by the points (x,y,w) with
- x2+y2+w2=1.
Oriented real projective space
Let n be a nonnegative integer. The (analytical model of, or canonicalTemplate:Sfn) oriented (real) projective space or (canonicalTemplate:Sfn) two-sided projectiveTemplate:Sfn space is defined as
Here, we use to stand for two-sided.
Distance in oriented real projective space
Distances between two points and in can be defined as elements
in .Template:Sfn
Oriented complex projective geometry
Template:See also Let n be a nonnegative integer. The oriented complex projective space is defined as
- .Template:Sfn Here, we write to stand for the 1-sphere.
See also
Notes
References
- Template:Cite book
From original Stanford Ph.D. dissertation, Primitives for Computational Geometry, available as [1]. - Template:Cite book
Nice introduction to oriented projective geometry in chapters 14 and 15. More at author's website. Sherif Ghali. - Template:Cite book
- Template:Cite book
- A. G. Oliveira, P. J. de Rezende, F. P. SelmiDei An Extension of CGAL to the Oriented Projective Plane T2 and its Dynamic Visualization System, 21st Annual ACM Symp. on Computational Geometry, Pisa, Italy, 2005.
- Template:Cite book