Ehrling's lemma
In mathematics, Ehrling's lemma, also known as Lions' lemma,[1] is a result concerning Banach spaces. It is often used in functional analysis to demonstrate the equivalence of certain norms on Sobolev spaces. It was named after Gunnar Ehrling.[2][3]Template:Efn
Statement of the lemma
Let (X, ||⋅||X), (Y, ||⋅||Y) and (Z, ||⋅||Z) be three Banach spaces. Assume that:
- X is compactly embedded in Y: i.e. X ⊆ Y and every ||⋅||X-bounded sequence in X has a subsequence that is ||⋅||Y-convergent; and
- Y is continuously embedded in Z: i.e. Y ⊆ Z and there is a constant k so that ||y||Z ≤ k||y||Y for every y ∈ Y.
Then, for every ε > 0, there exists a constant C(ε) such that, for all x ∈ X,
Corollary (equivalent norms for Sobolev spaces)
Let Ω ⊂ Rn be open and bounded, and let k ∈ N. Suppose that the Sobolev space Hk(Ω) is compactly embedded in Hk−1(Ω). Then the following two norms on Hk(Ω) are equivalent:
and
For the subspace of Hk(Ω) consisting of those Sobolev functions with zero trace (those that are "zero on the boundary" of Ω), the L2 norm of u can be left out to yield another equivalent norm.
References
Notes
Template:Notelist Template:Notelist-lr