Exceptional Lie algebra
Template:Short description Template:Format footnotes In mathematics, an exceptional Lie algebra is a complex simple Lie algebra whose Dynkin diagram is of exceptional (nonclassical) type.[1] There are exactly five of them: ; their respective dimensions are 14, 52, 78, 133, 248.[2] The corresponding diagrams are:[3]
- G2 : Template:Dynkin2
- F4 : Template:Dynkin2
- E6 : Template:Dynkin2
- E7 : Template:Dynkin2
- E8 : Template:Dynkin2
In contrast, simple Lie algebras that are not exceptional are called classical Lie algebras (there are infinitely many of them).
Construction
There is no simple universally accepted way to construct exceptional Lie algebras; in fact, they were discovered only in the process of the classification program. Here are some constructions:
- § 22.1-2 of Template:Harv give a detailed construction of .
- Exceptional Lie algebras may be realized as the derivation algebras of appropriate nonassociative algebras.
- Construct first and then find as subalgebras.
- Tits has given a uniformed construction of the five exceptional Lie algebras.[4]
References
Template:Reflist Template:Refbegin