Kelvin transform

From testwiki
Revision as of 01:20, 3 December 2023 by imported>Quondum (fmt)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The Kelvin transform is a device used in classical potential theory to extend the concept of a harmonic function, by allowing the definition of a function which is 'harmonic at infinity'. This technique is also used in the study of subharmonic and superharmonic functions.

In order to define the Kelvin transform Template:Itco* of a function f, it is necessary to first consider the concept of inversion in a sphere in Rn as follows.

It is possible to use inversion in any sphere, but the ideas are clearest when considering a sphere with centre at the origin.

Given a fixed sphere Template:Nowrap with centre 0 and radius R, the inversion of a point x in Rn is defined to be x*=R2|x|2x.

A useful effect of this inversion is that the origin 0 is the image of , and is the image of 0. Under this inversion, spheres are transformed into spheres, and the exterior of a sphere is transformed to the interior, and vice versa.

The Kelvin transform of a function is then defined by:

If D is an open subset of Rn which does not contain 0, then for any function f defined on D, the Kelvin transform Template:Itco* of f with respect to the sphere Template:Nowrap is f*(x*)=|x|n2R2n4f(x)=1|x*|n2f(x)=1|x*|n2f(R2|x*|2x*).

One of the important properties of the Kelvin transform, and the main reason behind its creation, is the following result:

Let D be an open subset in Rn which does not contain the origin 0. Then a function u is harmonic, subharmonic or superharmonic in D if and only if the Kelvin transform u* with respect to the sphere Template:Nowrap is harmonic, subharmonic or superharmonic in D*.

This follows from the formula Δu*(x*)=R4|x*|n+2(Δu)(R2|x*|2x*).

See also

References