Unitary divisor
Template:Short description In mathematics, a natural number a is a unitary divisor (or Hall divisor) of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.
The concept of a unitary divisor originates from R. Vaidyanathaswamy (1931),[1] who used the term block divisor.
Example
The integer 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor.
On the contrary, 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2.
Sum of unitary divisors
The sum-of-unitary-divisors function is denoted by the lowercase Greek letter sigma thus: σ*(n). The sum of the k-th powers of the unitary divisors is denoted by σ*k(n):
It is a multiplicative function. If the proper unitary divisors of a given number add up to that number, then that number is called a unitary perfect number.
Properties
Number 1 is a unitary divisor of every natural number.
The number of unitary divisors of a number n is 2k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers prp of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers prp for p ∈ S. If there are k prime factors, then there are exactly 2k subsets S, and the statement follows.
The sum of the unitary divisors of n is odd if n is a power of 2 (including 1), and even otherwise.
Both the count and the sum of the unitary divisors of n are multiplicative functions of n that are not completely multiplicative. The Dirichlet generating function is
Every divisor of n is unitary if and only if n is square-free.
The set of all unitary divisors of n forms a Boolean algebra with meet given by the greatest common divisor and join by the least common multiple. Equivalently, the set of unitary divisors of n forms a Boolean ring, where the addition and multiplication are given by
where denotes the greatest common divisor of a and b. [2]
Odd unitary divisors
The sum of the k-th powers of the odd unitary divisors is
It is also multiplicative, with Dirichlet generating function
Bi-unitary divisors
A divisor d of n is a bi-unitary divisor if the greatest common unitary divisor of d and n/d is 1. This concept originates from D. Suryanarayana (1972). [The number of bi-unitary divisors of an integer, in The Theory of Arithmetic Functions, Lecture Notes in Mathematics 251: 273–282, New York, Springer–Verlag].
The number of bi-unitary divisors of n is a multiplicative function of n with average order where[3]
A bi-unitary perfect number is one equal to the sum of its bi-unitary aliquot divisors. The only such numbers are 6, 60 and 90.[4]
OEIS sequences
- Template:OEIS2C is σ*0(n)
- Template:OEIS2C is σ*1(n)
- Template:OEIS2C to Template:OEIS2C are σ*2(n) to σ*8(n)
- Template:OEIS2C is , the number of unitary divisors
- Template:OEIS2C is σ(o)*0(n)
- Template:OEIS2C is σ(o)*1(n)
- Template:OEIS2C is
- Template:OEIS2C is
References
- Template:Cite book Section B3.
- Template:Cite book
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite web
- Template:Cite book
- Template:Cite arXiv Section 4.2
- Template:Cite book
- Template:Cite journal
External links
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Ivić (1985) p.395
- ↑ Sandor et al (2006) p.115