Paraboloidal coordinates

From testwiki
Revision as of 15:24, 1 March 2025 by imported>Muhammed amine benloulou (top: Added image and caption)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Parabolic coordinates 3D
Parabolic coordinates 3D

Paraboloidal coordinates are three-dimensional orthogonal coordinates (μ,ν,λ) that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates, both of which are also generalizations of two-dimensional parabolic coordinates. The coordinate surfaces of the former are parabolic cylinders, and the coordinate surfaces of the latter are circular paraboloids.

Differently from cylindrical and rotational parabolic coordinates, but similarly to the related ellipsoidal coordinates, the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Basic formulas

The Cartesian coordinates (x,y,z) can be produced from the ellipsoidal coordinates (μ,ν,λ) by the equations[1]

x2=4bc(μb)(bν)(bλ)
y2=4bc(μc)(cν)(λc)
z=μ+ν+λbc

with

μ>b>λ>c>ν>0

Consequently, surfaces of constant μ are downward opening elliptic paraboloids:

x2μb+y2μc=4(zμ)

Similarly, surfaces of constant ν are upward opening elliptic paraboloids,

x2bν+y2cν=4(zν)

whereas surfaces of constant λ are hyperbolic paraboloids:

x2bλy2λc=4(zλ)

Scale factors

The scale factors for the paraboloidal coordinates (μ,ν,λ) are[2]

hμ=[(μν)(μλ)(μb)(μc)]1/2
hν=[(μν)(λν)(bν)(cν)]1/2
hλ=[(λν)(μλ)(bλ)(λc)]1/2

Hence, the infinitesimal volume element is

dV=(μν)(μλ)(λν)[(μb)(μc)(bν)(cν)(bλ)(λc)]1/2 dλdμdν

Differential operators

Common differential operators can be expressed in the coordinates (μ,ν,λ) by substituting the scale factors into the general formulas for these operators, which are applicable to any three-dimensional orthogonal coordinates. For instance, the gradient operator is

=[(μb)(μc)(μν)(μλ)]1/2𝐞μμ+[(bν)(cν)(μν)(λν)]1/2𝐞νν+[(bλ)(λc)(λν)(μλ)]1/2𝐞λλ

and the Laplacian is

2=[(μb)(μc)(μν)(μλ)]1/2μ[(μb)1/2(μc)1/2μ]+[(bν)(cν)(μν)(λν)]1/2ν[(bν)1/2(cν)1/2ν]+[(bλ)(λc)(λν)(μλ)]1/2λ[(bλ)1/2(λc)1/2λ]

Applications

Paraboloidal coordinates can be useful for solving certain partial differential equations. For instance, the Laplace equation and Helmholtz equation are both separable in paraboloidal coordinates. Hence, the coordinates can be used to solve these equations in geometries with paraboloidal symmetry, i.e. with boundary conditions specified on sections of paraboloids.

The Helmholtz equation is (2+k2)ψ=0. Taking ψ=M(μ)N(ν)Λ(λ), the separated equations are[3]

(μb)(μc)d2Mdμ2+12[2μ(b+c)]dMdμ+[k2μ2+α3μα2]M=0(bν)(cν)d2Ndν2+12[2ν(b+c)]dNdν+[k2ν2+α3να2]N=0(bλ)(λc)d2Λdλ212[2λ(b+c)]dΛdλ[k2λ2+α3λα2]Λ=0

where α2 and α3 are the two separation constants. Similarly, the separated equations for the Laplace equation can be obtained by setting k=0 in the above.

Each of the separated equations can be cast in the form of the Baer equation. Direct solution of the equations is difficult, however, in part because the separation constants α2 and α3 appear simultaneously in all three equations.

Following the above approach, paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid.[4]

References

Template:Reflist

Bibliography

Template:Orthogonal coordinate systems

  1. Template:Citation
  2. Willatzen and Yoon (2011), p. 219
  3. Willatzen and Yoon (2011), p. 227
  4. Template:Citation