Effective potential

From testwiki
Revision as of 20:59, 7 September 2024 by imported>Fgnievinski (top)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description The effective potential (also known as effective potential energy) combines multiple, perhaps opposing, effects into a single potential. In its basic form, it is the sum of the 'opposing' centrifugal potential energy with the potential energy of a dynamical system. It may be used to determine the orbits of planets (both Newtonian and relativistic) and to perform semi-classical atomic calculations, and often allows problems to be reduced to fewer dimensions.

Definition

Effective potential. E > 0: hyperbolic orbit (A1 as pericenter), E = 0: parabolic orbit (A2 as pericenter), E < 0: elliptic orbit (A3 as pericenter, A3' as apocenter), E = Emin: circular orbit (A4 as radius). Points A1, ..., A4 are called turning points.

The basic form of potential Ueff is defined as: Ueff(𝐫)=L22μr2+U(𝐫), where

  • L is the angular momentum
  • r is the distance between the two masses
  • μ is the reduced mass of the two bodies (approximately equal to the mass of the orbiting body if one mass is much larger than the other); and
  • U(r) is the general form of the potential.

The effective force, then, is the negative gradient of the effective potential: 𝐅eff=Ueff(𝐫)=L2μr3𝐫^U(𝐫) where 𝐫^ denotes a unit vector in the radial direction.

Important properties

There are many useful features of the effective potential, such as UeffE.

To find the radius of a circular orbit, simply minimize the effective potential with respect to r, or equivalently set the net force to zero and then solve for r0: dUeffdr=0 After solving for r0, plug this back into Ueff to find the maximum value of the effective potential Ueffmax.

A circular orbit may be either stable or unstable. If it is unstable, a small perturbation could destabilize the orbit, but a stable orbit would return to equilibrium. To determine the stability of a circular orbit, determine the concavity of the effective potential. If the concavity is positive, the orbit is stable: d2Ueffdr2>0

The frequency of small oscillations, using basic Hamiltonian analysis, is ω=Ueffm, where the double prime indicates the second derivative of the effective potential with respect to r and it is evaluated at a minimum.

Gravitational potential

Template:Main

Components of the effective potential of two rotating bodies: (top) the combined gravitational potentials; (btm) the combined gravitational and rotational potentials
Visualisation of the effective potential in a plane containing the orbit (grey rubber-sheet model with purple contours of equal potential), the Lagrangian points (red) and a planet (blue) orbiting a star (yellow)[1]

Consider a particle of mass m orbiting a much heavier object of mass M. Assume Newtonian mechanics, which is both classical and non-relativistic. The conservation of energy and angular momentum give two constants E and L, which have values E=12m(r˙2+r2ϕ˙2)GmMr, L=mr2ϕ˙ when the motion of the larger mass is negligible. In these expressions,

Only two variables are needed, since the motion occurs in a plane. Substituting the second expression into the first and rearranging gives mr˙2=2EL2mr2+2GmMr=2E1r2(L2m2GmMr), 12mr˙2=EUeff(r), where Ueff(r)=L22mr2GmMr is the effective potential.[Note 1] The original two-variable problem has been reduced to a one-variable problem. For many applications the effective potential can be treated exactly like the potential energy of a one-dimensional system: for instance, an energy diagram using the effective potential determines turning points and locations of stable and unstable equilibria. A similar method may be used in other applications, for instance determining orbits in a general relativistic Schwarzschild metric.

Effective potentials are widely used in various condensed matter subfields, e.g. the Gauss-core potential (Likos 2002, Baeurle 2004) and the screened Coulomb potential (Likos 2001).

See also

Notes

Template:Reflist

References

Template:Reflist

Further reading


Cite error: <ref> tags exist for a group named "Note", but no corresponding <references group="Note"/> tag was found