Truncated great icosahedron
Template:Short description Template:Uniform polyhedra db File:Truncated great icosahedron.stl
In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices.[1] It is given a Schläfli symbol Template:Math or Template:Math as a truncated great icosahedron.
Cartesian coordinates
Cartesian coordinates for the vertices of a truncated great icosahedron centered at the origin are all the even permutations of
where is the golden ratio. Using one verifies that all vertices are on a sphere, centered at the origin, with the radius squared equal to The edges have length 2.
Related polyhedra
This polyhedron is the truncation of the great icosahedron:
The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.
| Name | Great stellated dodecahedron |
Truncated great stellated dodecahedron | Great icosidodecahedron |
Truncated great icosahedron |
Great icosahedron |
|---|---|---|---|---|---|
| Coxeter-Dynkin diagram |
Template:CDD | Template:CDD | Template:CDD | Template:CDD | Template:CDD |
| Picture |
Great stellapentakis dodecahedron
Template:Uniform polyhedra db File:Great stellapentakis dodecahedron.stl The great stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting triangular faces.
See also
References
External links
