Particle number operator

From testwiki
Revision as of 17:16, 4 March 2024 by 132.163.247.54 (talk) (See also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Use American English In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.

The following is in bra–ket notation: The number operator acts on Fock space. Let

|Ψν=|ϕ1,ϕ2,,ϕnν

be a Fock state, composed of single-particle states |ϕi drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators a(ϕi) and a(ϕi) we define the number operator by

Ni^ =def a(ϕi)a(ϕi)

and we have

Ni^|Ψν=Ni|Ψν

where Ni is the number of particles in state |ϕi. The above equality can be proven by noting that a(ϕi)|ϕ1,ϕ2,,ϕi1,ϕi,ϕi+1,,ϕnν=Ni|ϕ1,ϕ2,,ϕi1,ϕi+1,,ϕnνa(ϕi)|ϕ1,ϕ2,,ϕi1,ϕi+1,,ϕnν=Ni|ϕ1,ϕ2,,ϕi1,ϕi,ϕi+1,,ϕnν then Ni^|Ψν=a(ϕi)a(ϕi)|ϕ1,ϕ2,,ϕi1,ϕi,ϕi+1,,ϕnν=Nia(ϕi)|ϕ1,ϕ2,,ϕi1,ϕi+1,,ϕnν=NiNi|ϕ1,ϕ2,,ϕi1,ϕi,ϕi+1,,ϕnν=Ni|Ψν

See also

References