Parallel computation thesis

From testwiki
Revision as of 11:16, 13 August 2023 by imported>OAbot (Open access bot: doi added to citation with #oabot.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In computational complexity theory, the parallel computation thesis is a hypothesis which states that the time used by a (reasonable) parallel machine is polynomially related to the space used by a sequential machine. The parallel computation thesis was set forth by Chandra and Stockmeyer in 1976.[1]

In other words, for a computational model which allows computations to branch and run in parallel without bound, a formal language which is decidable under the model using no more than t(n) steps for inputs of length n is decidable by a non-branching machine using no more than t(n)k units of storage for some constant k. Similarly, if a machine in the unbranching model decides a language using no more than s(n) storage, a machine in the parallel model can decide the language in no more than s(n)k steps for some constant k.

The parallel computation thesis is not a rigorous formal statement, as it does not clearly define what constitutes an acceptable parallel model. A parallel machine must be sufficiently powerful to emulate the sequential machine in time polynomially related to the sequential space; compare Turing machine, non-deterministic Turing machine, and alternating Turing machine. N. Blum (1983) introduced a model for which the thesis does not hold.[2] However, the model allows 22O(T(n)) parallel threads of computation after T(n) steps. (See Big O notation.) Parberry (1986) suggested a more "reasonable" bound would be 2O(T(n)) or 2T(n)O(1), in defense of the thesis.[3] Goldschlager (1982) proposed a model which is sufficiently universal to emulate all "reasonable" parallel models, which adheres to the thesis.[4] Chandra and Stockmeyer originally formalized and proved results related to the thesis for deterministic and alternating Turing machines, which is where the thesis originated.[5]

References

Template:Reflist