Maxwell stress tensor

From testwiki
Revision as of 21:03, 20 November 2024 by 208.87.239.201 (talk) (Reworded.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Electromagnetism

The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of the electromagnetic stress–energy tensor, which is the electromagnetic component of the total stress–energy tensor. The latter describes the density and flux of energy and momentum in spacetime.

Motivation

As outlined below, the electromagnetic force is written in terms of 𝐄 and 𝐁. Using vector calculus and Maxwell's equations, symmetry is sought for in the terms containing 𝐄 and 𝐁, and introducing the Maxwell stress tensor simplifies the result.

Maxwell's equations in SI units in vacuum
(for reference)
Name Differential form
Gauss's law (in vacuum) 𝐄=ρε0
Gauss's law for magnetism 𝐁=0
Maxwell–Faraday equation
(Faraday's law of induction)
×𝐄=𝐁t
Ampère's circuital law (in vacuum)
(with Maxwell's correction)
×𝐁=μ0𝐉+μ0ε0𝐄t 

Template:Ordered list

in the above relation for conservation of momentum, σ is the momentum flux density and plays a role similar to 𝐒 in Poynting's theorem.

The above derivation assumes complete knowledge of both ρ and 𝐉 (both free and bounded charges and currents). For the case of nonlinear materials (such as magnetic iron with a BH-curve), the nonlinear Maxwell stress tensor must be used.[1]

Equation

In physics, the Maxwell stress tensor is the stress tensor of an electromagnetic field. As derived above, it is given by:

σij=ϵ0EiEj+1μ0BiBj12(ϵ0E2+1μ0B2)δij,

where ϵ0 is the electric constant and μ0 is the magnetic constant, 𝐄 is the electric field, 𝐁 is the magnetic field and δij is Kronecker's delta. In the Gaussian system, it is given by:

σij=14π(EiEj+HiHj12(E2+H2)δij),

where 𝐇 is the magnetizing field.

An alternative way of expressing this tensor is:

σ=14π[𝐄𝐄+𝐇𝐇E2+H22𝕀]

where is the dyadic product, and the last tensor is the unit dyad:

𝕀(100010001)=(𝐱^𝐱^+𝐲^𝐲^+𝐳^𝐳^)

The element ij of the Maxwell stress tensor has units of momentum per unit of area per unit time and gives the flux of momentum parallel to the ith axis crossing a surface normal to the jth axis (in the negative direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and the ij element of the tensor can also be interpreted as the force parallel to the ith axis suffered by a surface normal to the jth axis per unit of area. Indeed, the diagonal elements give the tension (pulling) acting on a differential area element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is given by the off-diagonal elements of the stress tensor.

It has recently been shown that the Maxwell stress tensor is the real part of a more general complex electromagnetic stress tensor whose imaginary part accounts for reactive electrodynamical forces.[2]

In magnetostatics

If the field is only magnetic (which is largely true in motors, for instance), some of the terms drop out, and the equation in SI units becomes:

σij=1μ0BiBj12μ0B2δij.

For cylindrical objects, such as the rotor of a motor, this is further simplified to:

σrt=1μ0BrBt12μ0B2δrt.

where r is the shear in the radial (outward from the cylinder) direction, and t is the shear in the tangential (around the cylinder) direction. It is the tangential force which spins the motor. Br is the flux density in the radial direction, and Bt is the flux density in the tangential direction.

In electrostatics

In electrostatics the effects of magnetism are not present. In this case the magnetic field vanishes, i.e. 𝐁=𝟎, and we obtain the electrostatic Maxwell stress tensor. It is given in component form by

σij=ε0EiEj12ε0E2δij

and in symbolic form by

σ=ε0𝐄𝐄12ε0(𝐄𝐄)𝐈

where 𝐈 is the appropriate identity tensor (usually 3×3).

Eigenvalue

The eigenvalues of the Maxwell stress tensor are given by:

{λ}={(ϵ02E2+12μ0B2),±(ϵ02E212μ0B2)2+ϵ0μ0(𝑬𝑩)2}

These eigenvalues are obtained by iteratively applying the matrix determinant lemma, in conjunction with the Sherman–Morrison formula.

Noting that the characteristic equation matrix, σλ𝕀, can be written as

σλ𝕀=(λ+V)𝕀+ϵ0𝐄𝐄T+1μ0𝐁𝐁T

where

V=12(ϵ0E2+1μ0B2)

we set

𝐔=(λ+V)𝕀+ϵ0𝐄𝐄T

Applying the matrix determinant lemma once, this gives us

det(σλ𝕀)=(1+1μ0𝐁T𝐔1𝐁)det(𝐔)

Applying it again yields,

det(σλ𝕀)=(1+1μ0𝐁T𝐔1𝐁)(1ϵ0𝐄T𝐄λ+V)(λV)3

From the last multiplicand on the RHS, we immediately see that λ=V is one of the eigenvalues.

To find the inverse of 𝐔, we use the Sherman-Morrison formula:

𝐔1=(λ+V)1ϵ0𝐄𝐄T(λ+V)2(λ+V)ϵ0𝐄T𝐄

Factoring out a (λV) term in the determinant, we are left with finding the zeros of the rational function:

((λ+V)ϵ0(𝐄𝐁)2μ0((λ+V)+ϵ0𝐄T𝐄))((λ+V)+ϵ0𝐄T𝐄)

Thus, once we solve

(λ+V)((λ+V)+ϵ0E2)ϵ0μ0(𝐄𝐁)2=0

we obtain the other two eigenvalues.

See also

References

Template:Reflist

  • David J. Griffiths, "Introduction to Electrodynamics" pp. 351–352, Benjamin Cummings Inc., 2008
  • John David Jackson, "Classical Electrodynamics, 3rd Ed.", John Wiley & Sons, Inc., 1999
  • Richard Becker, "Electromagnetic Fields and Interactions", Dover Publications Inc., 1964