Constant sheaf

From testwiki
Revision as of 05:49, 11 November 2024 by imported>Citation bot (Added publisher. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Sheaf theory | #UCB_Category 12/57)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:More citations needed In mathematics, the constant sheaf on a topological space X associated to a set A is a sheaf of sets on X whose stalks are all equal to A. It is denoted by A_ or AX. The constant presheaf with value A is the presheaf that assigns to each open subset of X the value A, and all of whose restriction maps are the identity map AA. The constant sheaf associated to A is the sheafification of the constant presheaf associated to A. This sheaf identifies with the sheaf of locally constant A-valued functions on X.[1]

In certain cases, the set A may be replaced with an object A in some category C (e.g. when C is the category of abelian groups, or commutative rings).

Constant sheaves of abelian groups appear in particular as coefficients in sheaf cohomology.

Basics

Let X be a topological space, and A a set. The sections of the constant sheaf A_ over an open set U may be interpreted as the continuous functions UA, where A is given the discrete topology. If U is connected, then these locally constant functions are constant. If f:X{pt} is the unique map to the one-point space and A is considered as a sheaf on {pt}, then the inverse image f1A is the constant sheaf A_ on X. The sheaf space of A_ is the projection map A (where X×AX is given the discrete topology).

A detailed example

Constant presheaf on a two-point discrete space
Two-point discrete topological space

Let X be the topological space consisting of two points p and q with the discrete topology. X has four open sets: ,{p},{q},{p,q}. The five non-trivial inclusions of the open sets of X are shown in the chart.

A presheaf on X chooses a set for each of the four open sets of X and a restriction map for each of the inclusions (with identity map for UU). The constant presheaf with value Z, denoted F, is the presheaf where all four sets are Z, the integers, and all restriction maps are the identity. F is a functor on the diagram of inclusions (a presheaf), because it is constant. It satisfies the gluing axiom, but is not a sheaf because it fails the local identity axiom on the empty set. This is because the empty set is covered by the empty family of sets, =U{}U, and vacuously, any two sections in F() are equal when restricted to any set in the empty family {}. The local identity axiom would therefore imply that any two sections in F() are equal, which is false.

To modify this into a presheaf G that satisfies the local identity axiom, let G()=0, a one-element set, and give G the value Z on all non-empty sets. For each inclusion of open sets, let the restriction be the unique map to 0 if the smaller set is empty, or the identity map otherwise. Note that G()=0 is forced by the local identity axiom.

Intermediate step for the constant sheaf

Now G is a separated presheaf (satisfies local identity), but unlike F it fails the gluing axiom. Indeed, {p,q} is disconnected, covered by non-intersecting open sets {p} and {q}. Choose distinct sections mn in 𝐙 over {p} and {q} respectively. Because m and n restrict to the same element 0 over , the gluing axiom would guarantee the existence of a unique section s on G({p,q}) that restricts to m on {p} and n on {q}; but the restriction maps are the identity, giving m=s=n, which is false. Intuitively, G({p,q}) is too small to carry information about both connected components {p} and {q}.

Constant sheaf on a two-point topological space

Modifying further to satisfy the gluing axiom, let

H({p,q})=Fun({p,q},𝐙)×

,

the

𝐙

-valued functions on

{p,q}

, and define the restriction maps of

H

to be natural restriction of functions to

{p}

and

{q}

, with the zero map restricting to

. Then

H

is a sheaf, called the constant sheaf on

X

with value

Z

. Since all restriction maps are ring homomorphisms,

H

is a sheaf of commutative rings.

See also

References

Template:Reflist