Sodium pertechnetate
Template:Chembox Sodium pertechnetate is the inorganic compound with the formula NaTcO4. This colourless salt contains the pertechnetate anion, Template:Chem that has slightly distorted tetrahedron symmetry both at 296 K and at 100 K[1] while the coordination polyhedron of the sodium cation is different from typical for scheelite structure. The radioactive Template:Chem anion is an important radiopharmaceutical for diagnostic use. The advantages to Template:SimpleNuclide include its short half-life of 6 hours and the low radiation exposure to the patient, which allow a patient to be injected with activities of more than 30 millicuries.[2] Template:Chem is a precursor to a variety of derivatives that are used to image different parts of the body.
Chemistry
Template:Chem is the starting material for most of the chemistry of technetium. Pertechnetate salts are usually colorless.[3] Template:Chem is produced by oxidizing technetium with nitric acid or with hydrogen peroxide. The pertechnetate anion is similar to the permanganate anion but is a weaker oxidizing agent. It is tetrahedral and diamagnetic. The standard electrode potential for Template:Chem/Template:Chem is only +0.738 V in acidic solution, as compared to +1.695 V for Template:Chem/Template:Chem.[2] Because of its diminished oxidizing power, Template:Chem is stable in alkaline solution. Template:Chem is more similar to Template:Chem. Depending on the reducing agent, Template:Chem can be converted to derivatives containing Tc(VI), Tc(V), and Tc(IV).[4] In the absence of strong complexing ligands, Template:Chem is reduced to a +4 oxidation state via the formation of Template:Chem hydrate.[2]
Pharmaceutical use
The half-life of Template:SimpleNuclide is long enough that labelling synthesis of the radiopharmaceutical and scintigraphic measurements can be performed without significant loss of radioactivity.[2] The energy emitted from Template:SimpleNuclide is 140 keV, which allows for the study of deep body organs. Radiopharmaceuticals have no intended pharmacologic effect and are used in very low concentrations. Radiopharmaceuticals containing Template:SimpleNuclide are currently being applied in the determining morphology of organs, testing of organ function, and scintigraphic and emission tomographic imaging. The gamma radiation emitted by the radionuclide allows organs to be imaged in vivo tomographically. Currently, over 80% of radiopharmaceuticals used clinically are labelled with Template:SimpleNuclide. A majority of radiopharmaceuticals labelled with Template:SimpleNuclide are synthesized by the reduction of the pertechnetate ion in the presence of ligands chosen to confer organ specificity of the drug. The resulting Template:SimpleNuclide compound is then injected into the body and a "gamma camera" is focused on sections or planes in order to image the spatial distribution of the Template:SimpleNuclide.
Specific imaging applications
Template:SimpleNuclide is used primarily in the study of the thyroid gland - its morphology, vascularity, and function. Template:Chem and iodide, due to their comparable charge/radius ratio, are similarly incorporated into the thyroid gland. The pertechnetate ion is not incorporated into the thyroglobulin. It is also used in the study of blood perfusion, regional accumulation, and cerebral lesions in the brain, as it accumulates primarily in the choroid plexus.
Sodium pertechnetate cannot pass through the blood–brain barrier. In addition to the salivary and thyroid glands, Template:Chem localizes in the stomach. Template:Chem is renally eliminated for the first three days after being injected. After a scanning is performed, it is recommended that a patient drink large amounts of water in order to expedite elimination of the radionuclide.[5] Other methods of Template:Chem administration include intraperitoneal, intramuscular, subcutaneous, as well as orally. The behavior of the Template:Chem ion is essentially the same, with small differences due to the difference in rate of absorption, regardless of the method of administration.[6]
Other reactions involving the pertechnetate ion
- Radiolysis of Template:Chem in nitrate solutions proceeds through the reduction to Template:Chem which induces complex disproportionation processes:
- Pertechnetate can react with Template:Chem to give Template:Chem.[7]
- Pertechnetate can also be reduced to Tc(IV/V) compounds in alkaline solutions in nuclear waste tanks without adding catalytic metals, reducing agents, or external radiation. Reactions of mono- and disaccharides with Template:Chem yield Tc(IV) compounds that are water-soluble.[8]
References
Template:Technetium compounds Template:Sodium compounds Template:Thyroid therapy Template:Thyroid hormone receptor modulators
- ↑ Template:Cite journal
- ↑ 2.0 2.1 2.2 2.3 Template:Cite journal
- ↑ Wells, A. F.; Structural Inorganic Chemistry; Clarendon Press: Oxford, Great Britain; 1984; p. 1050.
- ↑ Encyclopædia Britannica: Technetium
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite book
- ↑ Template:Cite journal