Van der Pol oscillator

From testwiki
Revision as of 23:09, 22 October 2024 by imported>Andy Dingley (References: f.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

In the study of dynamical systems, the van der Pol oscillator (named for Dutch physicist Balthasar van der Pol) is a non-conservative, oscillating system with non-linear damping. It evolves in time according to the second-order differential equation d2xdt2μ(1x2)dxdt+x=0, where Template:Mvar is the position coordinate—which is a function of the time Template:Mvar—and Template:Mvar is a scalar parameter indicating the nonlinearity and the strength of the damping.

File:Van der Pol oscillator phase plot 01.webm File:Van der Pol oscillator phase plot Liénard transformation.webm

The Van der Pol Oscillator simulated with the Brain Dynamics Toolbox[1]
Evolution of the limit cycle in the phase plane. The limit cycle begins as a circle and, with varying Template:Mvar, becomes increasingly sharp. An example of a relaxation oscillator.

History

The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips.[2] Van der Pol found stable oscillations,[3] which he subsequently called relaxation-oscillations[4] and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes. When these circuits are driven near the limit cycle, they become entrained, i.e. the driving signal pulls the current along with it. Van der Pol and his colleague, van der Mark, reported in the September 1927 issue of Nature that at certain drive frequencies an irregular noise was heard,[5] which was later found to be the result of deterministic chaos.[6]

The Van der Pol equation has a long history of being used in both the physical and biological sciences. For instance, in biology, Fitzhugh[7] and Nagumo[8] extended the equation in a planar field as a model for action potentials of neurons. The equation has also been utilised in seismology to model the two plates in a geological fault,[9] and in studies of phonation to model the right and left vocal fold oscillators.[10]

Two-dimensional form

Liénard's theorem can be used to prove that the system has a limit cycle. Applying the Liénard transformation y=xx3/3x˙/μ, where the dot indicates the time derivative, the Van der Pol oscillator can be written in its two-dimensional form:[11]

x˙=μ(x13x3y)
y˙=1μx.

Another commonly used form based on the transformation y=x˙ leads to:

x˙=y
y˙=μ(1x2)yx.

Results for the unforced oscillator

Relaxation oscillation in the Van der Pol oscillator without external forcing. The nonlinear damping parameter is equal to Template:Math.

[12]

  • When Template:Math, all initial conditions converge to a globally unique limit cycle. Near the origin x=dxdt=0, the system is unstable, and far from the origin, the system is damped.
  • The Van der Pol oscillator does not have an exact, analytic solution.[13] However, such a solution does exist for the limit cycle if Template:Math in the Lienard equation is a constant piece-wise function.
  • The period at small Template:Mvar has serial expansion T=2π1μ2/16+17μ4/3072+O(μ6). See Poincaré–Lindstedt method for a derivation to order 2. See chapter 10 of [14] for a derivation up to order 3, and [15] for a numerical derivation up to order 164.
  • For large Template:Mvar, the behavior of the oscillator has a slow buildup, fast release cycle (a cycle of building up the tension and releasing the tension, thus a relaxation oscillation). This is most easily seen in the form x˙=μ(x13x3y),y˙=1μx. In this form, the oscillator completes one cycle as follows:
  • The leading term in the period of the cycle is due to the slow ascending and descending, which can be computed as:T=2dt=2μdyx=2μ21dydxdxx=(32ln2)μ Higher orders of the period of the cycle is T=(32ln2)μ+3αμ1/3229μlnμ+0.0087μ+O(μ4/3). where Template:Math is the smallest root of Template:Math, where Template:Math is the Airy function. (Section 9.7 [16]) ([17] contains a derivation, but has a misprint of Template:Math to Template:Math.) This was derived by Anatoly Dorodnitsyn.[18][19]
  • The amplitude of the cycle is [20] 2+α3μ4/31627μ2lnμ+O(μ2)

Hopf bifurcation

As Template:Mvar moves from less than zero to more than zero, the spiral sink at origin becomes a spiral source, and a limit cycle appears "out of the blue" with radius two. This is because the transition is not generic: when Template:Math, both the differential equation becomes linear, and the origin becomes a circular node.

Knowing that in a Hopf bifurcation, the limit cycle should have size ε1/2, we may attempt to convert this to a Hopf bifurcation by using the change of variables u=ε1/2x, which givesu¨+u+u2u˙εu˙=0This indeed is a Hopf bifurcation.[21]

Hamiltonian for Van der Pol oscillator

Randomly chosen initial conditions are attracted to a stable orbit.

One can also write a time-independent Hamiltonian formalism for the Van der Pol oscillator by augmenting it to a four-dimensional autonomous dynamical system using an auxiliary second-order nonlinear differential equation as follows:

x¨μ(1x2)x˙+x=0,
y¨+μ(1x2)y˙+y=0.

Note that the dynamics of the original Van der Pol oscillator is not affected due to the one-way coupling between the time-evolutions of x and y variables. A Hamiltonian H for this system of equations can be shown to be[22]

H(x,y,px,py)=pxpy+xyμ(1x2)ypy,

where px=y˙+μ(1x2)y and py=x˙ are the conjugate momenta corresponding to x and y, respectively. This may, in principle, lead to quantization of the Van der Pol oscillator. Such a Hamiltonian also connects[23] the geometric phase of the limit cycle system having time dependent parameters with the Hannay angle of the corresponding Hamiltonian system.

Quantum oscillator

The quantum van der Pol oscillator, which is the quantum mechanical version of the classical van der Pol oscillator, has been proposed using a Lindblad equation to study its quantum dynamics and quantum synchronization.[24] Note the above Hamiltonian approach with an auxiliary second-order equation produces unbounded phase-space trajectories and hence cannot be used to quantize the van der Pol oscillator. In the limit of weak nonlinearity (i.e. μ→0) the van der Pol oscillator reduces to the Stuart–Landau equation. The Stuart–Landau equation in fact describes an entire class of limit-cycle oscillators in the weakly-nonlinear limit. The form of the classical Stuart–Landau equation is much simpler, and perhaps not surprisingly, can be quantized by a Lindblad equation which is also simpler than the Lindblad equation for the van der Pol oscillator. The quantum Stuart–Landau model has played an important role in the study of quantum synchronisation[25][26] (where it has often been called a van der Pol oscillator although it cannot be uniquely associated with the van der Pol oscillator). The relationship between the classical Stuart–Landau model (μ→0) and more general limit-cycle oscillators (arbitrary μ) has also been demonstrated numerically in the corresponding quantum models.[24]

Forced Van der Pol oscillator

Chaotic behaviour in the Van der Pol oscillator with sinusoidal forcing. The nonlinear damping parameter is equal to Template:Math, while the forcing has amplitude Template:Math and angular frequency Template:Math.

The forced, or driven, Van der Pol oscillator takes the 'original' function and adds a driving function Template:Math to give a differential equation of the form:

d2xdt2μ(1x2)dxdt+xAsin(ωt)=0,

where Template:Mvar is the amplitude, or displacement, of the wave function and Template:Mvar is its angular velocity.

Electrical circuit involving a triode, resulting in a forced Van der Pol oscillator.[27] The circuit contains: a triode, a resistor R, a capacitor C, a coupled inductor-set with self inductance L and mutual inductance M. In the serial RLC circuit there is a current i, and towards the triode anode ("plate") a current ia, while there is a voltage ug on the triode control grid. The Van der Pol oscillator is forced by an AC voltage source Es.

Author James Gleick described a vacuum tube Van der Pol oscillator in his book from 1987 Chaos: Making a New Science.[28] According to a New York Times article,[29] Gleick received a modern electronic Van der Pol oscillator from a reader in 1988.

See also

  • Mary Cartwright, British mathematician, one of the first to study the theory of deterministic chaos, particularly as applied to this oscillator.[30]

Template:-

References

Template:Reflist

Template:Chaos theory

  1. Heitmann, S., Breakspear, M (2017–2022) Brain Dynamics Toolbox. bdtoolbox.org doi.org/10.5281/zenodo.5625923
  2. Template:Cite journal
  3. B. van der Pol: "A theory of the amplitude of free and forced triode vibrations", Radio Review (later Wireless World) 1 701–710 (1920)
  4. Template:Cite journal
  5. Template:Cite journal
  6. Kanamaru, T., "Van der Pol oscillator", Scholarpedia, 2(1), 2202, (2007).
  7. Template:Cite journal
  8. Template:Cite journal
  9. Template:Cite journal
  10. Template:Cite conference
  11. Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics, Springer, 240–244, (1995).
  12. Grimshaw, R., Nonlinear ordinary differential equations, CRC Press, 153–163, (1993), Template:ISBN.
  13. Template:Cite journal
  14. Template:Cite book
  15. Template:Cite journal
  16. Template:Cite book
  17. Template:Cite book
  18. Template:Cite journal
  19. Template:Cite book
  20. Template:Cite journal
  21. Template:Cite book
  22. Template:Cite journal
  23. Template:Cite journal
  24. 24.0 24.1 Template:Cite journal
  25. Template:Cite journal
  26. Template:Cite journal
  27. K. Tomita (1986): "Periodically forced nonlinear oscillators". In: Chaos, Ed. Arun V. Holden. Manchester University Press, Template:ISBN, pp. 213–214.
  28. Template:Cite book
  29. Template:Cite news
  30. Template:Cite journal