Vertex-transitive graph: Difference between revisions
imported>Sbeyer m Fix (update) link to census |
(No difference)
|
Latest revision as of 01:09, 28 December 2024
Template:Short description Template:Graph families defined by their automorphisms
In the mathematical field of graph theory, an automorphism is a permutation of the vertices such that edges are mapped to edges and non-edges are mapped to non-edges.[1] A graph is a vertex-transitive graph if, given any two vertices Template:Math and Template:Math of Template:Mvar, there is an automorphism Template:Math such that
In other words, a graph is vertex-transitive if its automorphism group acts transitively on its vertices.[1] A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical.
Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph).
Finite examples

Finite vertex-transitive graphs include the symmetric graphs (such as the Petersen graph, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also vertex-transitive, as are the vertices and edges of the Archimedean solids (though only two of these are symmetric). Potočnik, Spiga and Verret have constructed a census of all connected cubic vertex-transitive graphs on at most 1280 vertices.[2]
Although every Cayley graph is vertex-transitive, there exist other vertex-transitive graphs that are not Cayley graphs. The most famous example is the Petersen graph, but others can be constructed including the line graphs of edge-transitive non-bipartite graphs with odd vertex degrees.[3]
Properties
The edge-connectivity of a connected vertex-transitive graph is equal to the degree d, while the vertex-connectivity will be at least 2(d + 1)/3.[1] If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to d.[4]
Infinite examples
Infinite vertex-transitive graphs include:
- infinite paths (infinite in both directions)
- infinite regular trees, e.g. the Cayley graph of the free group
- graphs of uniform tessellations (see a complete list of planar tessellations), including all tilings by regular polygons
- infinite Cayley graphs
- the Rado graph
Two countable vertex-transitive graphs are called quasi-isometric if the ratio of their distance functions is bounded from below and from above. A well known conjecture stated that every infinite vertex-transitive graph is quasi-isometric to a Cayley graph. A counterexample was proposed by Diestel and Leader in 2001.[5] In 2005, Eskin, Fisher, and Whyte confirmed the counterexample.[6]
See also
References
- ↑ 1.0 1.1 1.2 Template:Citation.
- ↑ Template:Citation.
- ↑ Template:Citation. Lauri and Scapelleto credit this construction to Mark Watkins.
- ↑ Template:Citation
- ↑ Template:Citation.
- ↑ Template:Cite arXiv.
External links
- Template:MathWorld
- A census of small connected cubic vertex-transitive graphs. Primož Potočnik, Pablo Spiga, Gabriel Verret, 2012.
- Vertex-transitive Graphs On Fewer Than 48 Vertices. Gordon Royle and Derek Holt, 2020.