Computed torque control: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>AnnaBSP
No edit summary
ย 
(No difference)

Latest revision as of 16:04, 21 November 2024

Template:Multiple issues Template:Short description

Computed torque control is a control scheme used in motion control in robotics. It combines feedback linearization via a PID controller of the error with a dynamical model of the controlled robot.[1][2]

Let the dynamics of the controlled robot be described by

๐Œ(θโ†’)θโ†’ยจ+๐‚(θโ†’,θโ†’ห™)θโ†’ห™+τโ†’g(θโ†’)=τโ†’ where θโ†’โ„N is the state vector of joint variables that describe the system, ๐Œ(θโ†’) is the inertia matrix, ๐‚(θโ†’,θโ†’ห™)θโ†’ห™ is the vector Coriolis and centrifugal torques, τโ†’g(θโ†’) are the torques caused by gravity and τโ†’ is the vector of joint torque inputs.

Assume that we have an approximate model of the system made up of ๐Œ~(θโ†’),๐‚~(θโ†’,θโ†’ห™),τโ†’~g(θโ†’). This model does not need to be perfect, but it should justify the approximations ๐Œ(θโ†’)1๐Œ~(θโ†’)๐Ÿ and ๐Œ1(๐‚(θโ†’,θโ†’ห™)θโ†’ห™+τโ†’g(θโ†’))๐Œ1(๐‚~(θโ†’,θโ†’ห™)θโ†’ห™+τโ†’~g(θโ†’)).

Given a desired trajectory θโ†’d(t) the error relative to the current state θโ†’(t) is then θโ†’e(t)=θโ†’d(t)θโ†’(t).

We can then set the input of the system to be

τโ†’(t)=๐Œ~(θโ†’)(θโ†’ยจd(t)+Kpθโ†’e(t)+Ki0tθโ†’ยจe(t)dt+Kdθโ†’ห™e(t))+๐‚~(θโ†’,θโ†’ห™)+τโ†’~g(θโ†’)

With this input the dynamics of the entire systems becomes

๐Œ(θโ†’)θโ†’ยจ+๐‚(θโ†’,θโ†’ห™)θโ†’ห™+τโ†’g(θโ†’)=๐Œ~(θโ†’)(θโ†’ยจd(t)+Kpθโ†’e(t)+Ki0tθโ†’ยจe(t)dt+Kdθโ†’ห™e(t))+๐‚~(θโ†’,θโ†’ห™)+τโ†’~g(θโ†’)θโ†’ยจ+๐Œ(θโ†’)1(๐‚(θโ†’,θโ†’ห™)θโ†’ห™+τโ†’g(θโ†’))=๐Œ(θโ†’)1๐Œ~(θโ†’)๐Ÿ(θโ†’ยจd(t)+Kpθโ†’e(t)+Ki0tθโ†’ยจe(t)dt+Kdθโ†’ห™e(t))+๐Œ(θโ†’)1(๐‚~(θโ†’,θโ†’ห™)+τโ†’~g(θโ†’))θโ†’ยจ=θโ†’ยจd(t)+Kpθโ†’e(t)+Ki0tθโ†’ยจe(t)dt+Kdθโ†’ห™e(t)0=θโ†’ยจe+Kpθโ†’e(t)+Ki0tθโ†’ยจe(t)dt+Kdθโ†’ห™e(t)

and the normal methods for PID controller tuning can be applied. In this way the complicated nonlinear control problem has been reduced to a relatively simple linear control problem.

References

Template:Reflist