Hermite transform: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>RowanElder
Copyediting and removal of a contentious poorly sourced claim
 
(No difference)

Latest revision as of 15:05, 13 August 2024

In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials Hn(x) as kernels of the transform.

The Hermite transform H{F(x)}fH(n) of a function F(x) is H{F(x)}fH(n)=ex2 Hn(x) F(x) dx

The inverse Hermite transform H1{fH(n)} is given by H1{fH(n)}F(x)=n=01π2nn!fH(n)Hn(x)

Some Hermite transform pairs

F(x) fH(n)
xm {m!π2mn(mn2)!,(mn) even and00,otherwise[1]
eax πanea2/4
e2xtt2, |t|<12 π(2t)n
Hm(x) π2nn!δnm
x2Hm(x) 2nn!π{1,n=m+2(n+12),n=m(n+1)(n+2),n=m20,otherwise
ex2Hm(x) (1)pm2p1/2Γ(p+1/2), m+n=2p, p
Hm2(x) {2m+n/2π(mn/2)m!n!(n/2)!,n even and2m0,otherwise[2]
Hm(x)Hp(x) {2kπm!n!p!(km)!(kn)!(kp)!,n+m+p=2k, k; |mp|nm+p0,otherwise[3]
Hn+p+q(x)Hp(x)Hq(x) π2n+p+q(n+p+q)!
dmdxmF(x) fH(n+m)
xdmdxmF(x) nfH(n+m1)+12fH(n+m+1)
ex2ddx[ex2ddxF(x)] 2nfH(n)
F(xx0) πk=0(x0)kk!fH(n+k)
F(x)*G(x) π(1)n[22n+1Γ(n+32)]1fH(n)gH(n)[4]
ez2sin(xz), |z|<12  {π(1)n2(2z)n,nodd0,neven
(1z2)1/2exp[2xyz(x2+y2)z2(1z2)] πznHn(y)[5][6]
Hm(y)Hm+1(x)Hm(x)Hm+1(y)2m+1m!(xy) {πHn(y)nm0n>m

References

Template:Reflist

Sources