Griffiths group: Difference between revisions
Jump to navigation
Jump to search
imported>Sir Ibee Open access status updates in citations with OAbot #oabot |
(No difference)
|
Latest revision as of 18:56, 11 January 2024
In mathematics, more specifically in algebraic geometry, the Griffiths group of a projective complex manifold X measures the difference between homological equivalence and algebraic equivalence, which are two important equivalence relations of algebraic cycles.
More precisely, it is defined as
where denotes the group of algebraic cycles of some fixed codimension k and the subscripts indicate the groups that are homologically trivial, respectively algebraically equivalent to zero.[1]
This group was introduced by Phillip Griffiths who showed that for a general quintic in (projective 4-space), the group is not a torsion group.