Analytically unramified ring: Difference between revisions
imported>InternetArchiveBot Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
(No difference)
|
Latest revision as of 04:46, 25 August 2023
In algebra, an analytically unramified ring is a local ring whose completion is reduced (has no nonzero nilpotent).
The following rings are analytically unramified:
- pseudo-geometric reduced ring.
- excellent reduced ring.
Template:Harvtxt showed that every local ring of an algebraic variety is analytically unramified. Template:Harvtxt gave an example of an analytically ramified reduced local ring. Krull showed that every 1-dimensional normal Noetherian local ring is analytically unramified; more precisely he showed that a 1-dimensional normal Noetherian local domain is analytically unramified if and only if its integral closure is a finite module.Template:CN This prompted Template:Harvtxt to ask whether a local Noetherian domain such that its integral closure is a finite module is always analytically unramified. However Template:Harvtxt gave an example of a 2-dimensional normal analytically ramified Noetherian local ring. Nagata also showed that a slightly stronger version of Zariski's question is correct: if the normalization of every finite extension of a given Noetherian local ring R is a finite module, then R is analytically unramified.
There are two classical theorems of Template:Harvs that characterize analytically unramified rings. The first says that a Noetherian local ring (R, m) is analytically unramified if and only if there are a m-primary ideal J and a sequence such that , where the bar means the integral closure of an ideal. The second says that a Noetherian local domain is analytically unramified if and only if, for every finitely-generated R-algebra S lying between R and the field of fractions K of R, the integral closure of S in K is a finitely generated module over S. The second follows from the first.
Nagata's example
Let K0 be a perfect field of characteristic 2, such as F2. Let K be K0({un, vn : n ≥ 0}), where the un and vn are indeterminates. Let T be the subring of the formal power series ring K Template:Brackets generated by K and K2 Template:Brackets and the element Σ(unxn+ vnyn). Nagata proves that T is a normal local noetherian domain whose completion has nonzero nilpotent elements, so T is analytically ramified.