Free motion equation: Difference between revisions
imported>Fadesga |
(No difference)
|
Latest revision as of 20:00, 17 July 2022
A free motion equation is a differential equation that describes a mechanical system in the absence of external forces, but in the presence only of an inertial force depending on the choice of a reference frame. In non-autonomous mechanics on a configuration space , a free motion equation is defined as a second order non-autonomous dynamic equation on which is brought into the form
with respect to some reference frame on . Given an arbitrary reference frame on , a free motion equation reads
where is a connection on associates with the initial reference frame . The right-hand side of this equation is treated as an inertial force.
A free motion equation need not exist in general. It can be defined if and only if a configuration bundle of a mechanical system is a toroidal cylinder .
See also
References
- De Leon, M., Rodrigues, P., Methods of Differential Geometry in Analytical Mechanics (North Holland, 1989).
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric Formulation of Classical and Quantum Mechanics (World Scientific, 2010) Template:ISBN (Template:ArXiv).
Template:Theoretical-physics-stub
Template:Classicalmechanics-stub