Carlitz exponential: Difference between revisions
imported>Citation bot Alter: location. | Use this bot. Report bugs. | Suggested by Abductive | Category:All articles that are too technical | #UCB_Category 74/2865 |
(No difference)
|
Latest revision as of 01:43, 3 June 2021
Template:Multiple issues In mathematics, the Carlitz exponential is a characteristic p analogue to the usual exponential function studied in real and complex analysis. It is used in the definition of the Carlitz module – an example of a Drinfeld module.
Definition
We work over the polynomial ring Fq[T] of one variable over a finite field Fq with q elements. The completion C∞ of an algebraic closure of the field Fq((T−1)) of formal Laurent series in T−1 will be useful. It is a complete and algebraically closed field.
First we need analogues to the factorials, which appear in the definition of the usual exponential function. For i > 0 we define
and D0 := 1. Note that the usual factorial is inappropriate here, since n! vanishes in Fq[T] unless n is smaller than the characteristic of Fq[T].
Using this we define the Carlitz exponential eC:C∞ → C∞ by the convergent sum
Relation to the Carlitz module
The Carlitz exponential satisfies the functional equation
where we may view as the power of map or as an element of the ring of noncommutative polynomials. By the universal property of polynomial rings in one variable this extends to a ring homomorphism ψ:Fq[T]→C∞{τ}, defining a Drinfeld Fq[T]-module over C∞{τ}. It is called the Carlitz module.