Automorphic L-function: Difference between revisions
imported>LucasBrown Added short description |
(No difference)
|
Latest revision as of 08:43, 13 September 2024
In mathematics, an automorphic L-function is a function L(s,π,r) of a complex variable s, associated to an automorphic representation π of a reductive group G over a global field and a finite-dimensional complex representation r of the Langlands dual group LG of G, generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form. They were introduced by Template:Harvs.
Template:Harvtxt and Template:Harvtxt gave surveys of automorphic L-functions.
Properties
Automorphic -functions should have the following properties (which have been proved in some cases but are still conjectural in other cases).
The L-function should be a product over the places of of local functions.
Here the automorphic representation is a tensor product of the representations of local groups.
The L-function is expected to have an analytic continuation as a meromorphic function of all complex , and satisfy a functional equation
where the factor is a product of "local constants"
almost all of which are 1.
General linear groups
Template:Harvtxt constructed the automorphic L-functions for general linear groups with r the standard representation (so-called standard L-functions) and verified analytic continuation and the functional equation, by using a generalization of the method in Tate's thesis. Ubiquitous in the Langlands Program are Rankin-Selberg products of representations of GL(m) and GL(n). The resulting Rankin-Selberg L-functions satisfy a number of analytic properties, their functional equation being first proved via the Langlands–Shahidi method.
In general, the Langlands functoriality conjectures imply that automorphic L-functions of a connected reductive group are equal to products of automorphic L-functions of general linear groups. A proof of Langlands functoriality would also lead towards a thorough understanding of the analytic properties of automorphic L-functions.