Rectified 6-simplexes: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Paracompact633
m Add margin-left
 
(No difference)

Latest revision as of 05:55, 4 April 2023


6-simplex
Template:CDD

Rectified 6-simplex
Template:CDD

Birectified 6-simplex
Template:CDD
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

There are three unique degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex. Vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex.

Rectified 6-simplex

Template:Uniform polypeton stat table E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as STemplate:Supsub. It is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as Template:CDD.

Alternate names

  • Rectified heptapeton (Acronym: ril) (Jonathan Bowers)

Coordinates

The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,1). This construction is based on facets of the rectified 7-orthoplex.

Images

Template:6-simplex Coxeter plane graphs

Birectified 6-simplex

Birectified 6-simplex
Type uniform 6-polytope
Class A6 polytope
Schläfli symbol t2{3,3,3,3,3}
2r{35} = {33,2}
or {3,3,33,3}
Coxeter symbol 032
Coxeter diagrams Template:CDD
Template:CDD
5-faces 14 total:
7 t1{3,3,3,3}
7 t2{3,3,3,3}
4-faces 84
Cells 245
Faces 350
Edges 210
Vertices 35
Vertex figure {3}x{3,3}
Petrie polygon Heptagon
Coxeter groups A6, [3,3,3,3,3]
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as STemplate:Supsub. It is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as Template:CDD.

Alternate names

  • Birectified heptapeton (Acronym: bril) (Jonathan Bowers)

Coordinates

The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,1). This construction is based on facets of the birectified 7-orthoplex.

Images

Template:6-simplex Coxeter plane graphs

The rectified 6-simplex polytope is the vertex figure of the 7-demicube, and the edge figure of the uniform 241 polytope.

These polytopes are a part of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.

Template:Heptapeton family

Notes

Template:Reflist

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:Isbn [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Template:KlitzingPolytopes o3x3o3o3o3o - ril, o3x3o3o3o3o - bril

Template:Polytopes