Semialgebraic space: Difference between revisions
imported>Saptajit D #suggestededit-add 1.0 |
(No difference)
|
Latest revision as of 08:37, 8 May 2023
Template:Short description Template:Unreferenced In mathematics, especially in real algebraic geometry, a semialgebraic space is a space which is locally isomorphic to a semialgebraic set.
Definition
Let U be an open subset of Rn for some n. A semialgebraic function on U is defined to be a continuous real-valued function on U whose restriction to any semialgebraic set contained in U has a graph which is a semialgebraic subset of the product space Rn×R. This endows Rn with a sheaf of semialgebraic functions.
(For example, any polynomial mapping between semialgebraic sets is a semialgebraic function, as is the maximum of two semialgebraic functions.)
A semialgebraic space is a locally ringed space which is locally isomorphic to Rn with its sheaf of semialgebraic functions.