Sectional density: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Msgevans00
No edit summary
 
(No difference)

Latest revision as of 08:13, 27 May 2024

Template:Short description Template:Infobox physical quantity Sectional density (often abbreviated SD) is the ratio of an object's mass to its cross sectional area with respect to a given axis. It conveys how well an object's mass is distributed (by its shape) to overcome resistance along that axis.

Sectional density is used in gun ballistics. In this context, it is the ratio of a projectile's weight (often in either kilograms, grams, pounds or grains) to its transverse section (often in either square centimeters, square millimeters or square inches), with respect to the axis of motion. It conveys how well an object's mass is distributed (by its shape) to overcome resistance along that axis. For illustration, a nail can penetrate a target medium with its pointed end first with less force than a coin of the same mass lying flat on the target medium.

During World War II, bunker-busting Röchling shells were developed by German engineer August Coenders, based on the theory of increasing sectional density to improve penetration. Röchling shells were tested in 1942 and 1943 against the Belgian Fort d'Aubin-Neufchâteau[1] and saw very limited use during World War II.

Formula

In a general physics context, sectional density is defined as:

SD=MA[2]
  • SD is the sectional density
  • M is the mass of the projectile
  • A is the cross-sectional area

The SI derived unit for sectional density is kilograms per square meter (kg/m2). The general formula with units then becomes:

SDkg/m2=mkgAm2

where:

  • SDkg/m2 is the sectional density in kilograms per square meters
  • mkg is the weight of the object in kilograms
  • Am2 is the cross sectional area of the object in meters

Units conversion table

Template:Nowrap
kg/m2 kg/cm2 g/mm2 lbm/in2
1 kg/m2 = 1 Template:Val Template:Val Template:Val
1 kg/cm2 = Template:Val 1 Template:Val Template:Val
1 g/mm2 = Template:Val Template:Val 1 Template:Val
1 lbm/in2 = Template:Val Template:Val Template:Val 1

(Values in bold face are exact.)

Use in ballistics

Template:More citations needed section The sectional density of a projectile can be employed in two areas of ballistics. Within external ballistics, when the sectional density of a projectile is divided by its coefficient of form (form factor in commercial small arms jargon[3]); it yields the projectile's ballistic coefficient.[4] Sectional density has the same (implied) units as the ballistic coefficient.

Within terminal ballistics, the sectional density of a projectile is one of the determining factors for projectile penetration. The interaction between projectile (fragments) and target media is however a complex subject. A study regarding hunting bullets shows that besides sectional density several other parameters determine bullet penetration.[5][6][7]

If all other factors are equal, the projectile with the greatest amount of sectional density will penetrate the deepest.

Metric units

When working with ballistics using SI units, it is common to use either grams per square millimeter or kilograms per square centimeter. Their relationship to the base unit kilograms per square meter is shown in the conversion table above.

Grams per square millimeter

Using grams per square millimeter (g/mm2), the formula then becomes:

SDg/mm2=4mgπdmm2

Where:

  • SDg/mm2 is the sectional density in grams per square millimeters
  • mg is the mass of the projectile in grams
  • dmm is the diameter of the projectile in millimeters

For example, a small arms bullet with a mass of Template:Convert and having a diameter of Template:Convert has a sectional density of:

4 · 10.4 / (π·6.72) = 0.295 g/mm2

Kilograms per square centimeter

Using kilograms per square centimeter (kg/cm2), the formula then becomes:

SDkg/cm2=4mkgπdcm2

Where:

  • SDkg/cm2 is the sectional density in kilograms per square centimeter
  • mg is the mass of the projectile in grams
  • dcm is the diameter of the projectile in centimeters

For example, an M107 projectile with a mass of 43.2 kg and having a body diameter of Template:Convert has a sectional density of:

4 · 43.2 / (π·154.712) = 0.230 kg/cm2

English units

In older ballistics literature from English speaking countries, and still to this day, the most commonly used unit for sectional density of circular cross-sections is (mass) pounds per square inch (lbm/in2) The formula then becomes:

SDlb/in2=4mlbπdin2=4mgrπ7000din2[8][9][10]
SDlbs/sqin=4mlbπdin2=4mgrπ7000din2

where:

  • SD is the sectional density in (mass) pounds per square inch
  • the mass of the projectile is:
  • din is the diameter of the projectile in inches

The sectional density defined this way is usually presented without units. In Europe the derivative unit g/cm2 is also used in literature regarding small arms projectiles to get a number in front of the decimal separator.Template:Citation needed

As an example, a bullet with a mass of Template:Convert and a diameter of Template:Convert, has a sectional density (SD) of:

4·(160 gr/7000) / (π·0.264 in2) = 0.418 lbm/in2

As another example, the M107 projectile mentioned above with a mass of Template:Convert and having a body diameter of Template:Convert has a sectional density of:

4 · (95.24) / (π·6.09092) = 3.268 lbm/in2

See also

References

Template:Reflist

  1. Les étranges obus du fort de Neufchâteau Template:In lang
  2. Wound Ballistics: Basics and Applications
  3. Hornady Handbook of Cartridge Reloading: Rifle, Pistol Vol. II (1973) Hornady Manufacturing Company, Fourth Printing July 1978, p505
  4. Bryan Litz. Applied Ballistics for Long Range Shooting.
  5. Template:Cite web
  6. MacPherson D: Bullet Penetration—Modeling the Dynamics and the Incapacitation Resulting From Wound Trauma. Ballistics Publications, El Segundo, CA, 1994.
  7. Template:Cite web
  8. The Sectional Density of Rifle Bullets By Chuck Hawks
  9. Sectional Density and Ballistic Coefficients
  10. Sectional Density for Beginners By Bob Beers