Malliavin's absolute continuity lemma: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>JJMC89 bot III
 
(No difference)

Latest revision as of 21:20, 28 October 2023

Template:Short description In mathematics — specifically, in measure theoryMalliavin's absolute continuity lemma is a result due to the French mathematician Paul Malliavin that plays a foundational rôle in the regularity (smoothness) theorems of the Malliavin calculus. Malliavin's lemma gives a sufficient condition for a finite Borel measure to be absolutely continuous with respect to Lebesgue measure.

Statement of the lemma

Let μ be a finite Borel measure on n-dimensional Euclidean space Rn. Suppose that, for every x ∈ Rn, there exists a constant C = C(x) such that

|𝐑nDφ(y)(x)dμ(y)|C(x)φ

for every C function φ : Rn → R with compact support. Then μ is absolutely continuous with respect to n-dimensional Lebesgue measure λn on Rn. In the above, Dφ(y) denotes the Fréchet derivative of φ at y and ||φ|| denotes the supremum norm of φ.

References