Mu problem: Difference between revisions
imported>Citation bot Add: bibcode, page. | Use this bot. Report bugs. | Suggested by Abductive | Category:Supersymmetric quantum field theory | #UCB_Category 55/58 ย |
(No difference)
|
Latest revision as of 12:00, 14 February 2025
In theoretical physics, the Template:Math problem is a problem of supersymmetric theories, concerned with understanding the parameters of the theory.
Background
The supersymmetric Higgs mass parameter Template:Mvar appears as the following term in the superpotential: Template:Nowrap. It is necessary to provide a mass for the fermionic superpartners of the Higgs bosons, i.e. the higgsinos, and it enters as well the scalar potential of the Higgs bosons.
To ensure that Template:MvarTemplate:Sub and Template:MvarTemplate:Sub get a non-zero vacuum expectation value after electroweak symmetry breaking, Template:Mvar should be of the order of magnitude of the electroweak scale, many orders of magnitude smaller than the Planck scale (Template:MvarTemplate:Sub), which is the natural cutoff scale. This brings about a problem of naturalness: Why is that scale so much smaller than the cutoff scale? And why, if the Template:Mvar term in the superpotential has different physical origins, do the corresponding scale happen to fall so close to each other?
Before LHC, it was thought that the soft supersymmetry breaking terms should also be of the same order of magnitude as the electroweak scale. This was negated by the Higgs mass measurements and limits on supersymmetry models.[1]
One proposed solution, known as the GiudiceโMasiero mechanism,[2] is that this term does not appear explicitly in the Lagrangian, because it violates some global symmetry, and can therefore be created only via spontaneous breaking of this symmetry. This is proposed to happen together with F-term supersymmetry breaking, with a spurious field Template:Math that parameterizes the hidden supersymmetry-breaking sector of the theory (meaning that Template:MvarTemplate:Sub is the non-zero Template:Mvar-term).
Let us assume that the Kahler potential includes a term of the form times some dimensionless coefficient, which is naturally of order one, and where Mpl is Planck mass. Then as supersymmetry breaks, Template:MvarTemplate:Sub gets a non-zero vacuum expectation value โจTemplate:MvarTemplate:Subโฉ and the following effective term is added to the superpotential: which gives a measured On the other hand, soft supersymmetry breaking terms are similarly created and also have a natural scale of
See also
- NMSSM (Next-to-Minimal Supersymmetric Standard Model)
- Minimal Supersymmetric Standard Model
- Doubletโtriplet splitting problem
- Hierarchy problem
- Little hierarchy problem