Computable ordinal: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Jlwoodwa
 
(No difference)

Latest revision as of 23:15, 23 January 2024

In mathematics, specifically computability and set theory, an ordinal α is said to be computable or recursive if there is a computable well-ordering of a computable subset of the natural numbers having the order type α.

It is easy to check that ω is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards.

The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by ω1𝖢𝖪. The Church–Kleene ordinal is a limit ordinal. An ordinal is computable if and only if it is smaller than ω1𝖢𝖪. Since there are only countably many computable relations, there are also only countably many computable ordinals. Thus, ω1𝖢𝖪 is countable.

The computable ordinals are exactly the ordinals that have an ordinal notation in Kleene's 𝒪.

See also

References

Template:Refbegin

Template:Refend


Template:Settheory-stub