Feynman parametrization: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
(No difference)

Latest revision as of 17:20, 13 December 2024

Template:Short description Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.

Formulas

Richard Feynman observed that:[1]

1AB=01du[uA+(1u)B]2

which is valid for any complex numbers A and B as long as 0 is not contained in the line segment connecting A and B. The formula helps to evaluate integrals like:

dpA(p)B(p)=dp01du[uA(p)+(1u)B(p)]2=01dudp[uA(p)+(1u)B(p)]2.

If A(p) and B(p) are linear functions of p, then the last integral can be evaluated using substitution.

More generally, using the Dirac delta function δ:[2]

1A1An=(n1)!01du101dunδ(1k=1nuk)(k=1nukAk)n=(n1)!01du10u1du20un2dun11[A1un1+A2(un2un1)++An(1u1)]n.

This formula is valid for any complex numbers A1,...,An as long as 0 is not contained in their convex hull.

Even more generally, provided that Re(αj)>0 for all 1jn:

1A1α1Anαn=Γ(α1++αn)Γ(α1)Γ(αn)01du101dunδ(1k=1nuk)u1α11unαn1(k=1nukAk)k=1nαk

where the Gamma function Γ was used.[3]

Derivation

1AB=1AB(1B1A)=1ABBAdzz2.

By using the substitution u=(zB)/(AB), we have du=dz/(AB), and z=uA+(1u)B, from which we get the desired result

1AB=01du[uA+(1u)B]2.

In more general cases, derivations can be done very efficiently using the Schwinger parametrization. For example, in order to derive the Feynman parametrized form of 1A1...An, we first reexpress all the factors in the denominator in their Schwinger parametrized form:

1Ai=0dsiesiAi  for i=1,,n

and rewrite,

1A1An=0ds10dsnexp((s1A1++snAn)).

Then we perform the following change of integration variables,

α=s1+...+sn,
αi=sis1++sn; i=1,,n1,

to obtain,

1A1An=01dα1dαn10dα αn1exp(α{α1A1++αn1An1+(1α1αn1)An}).

where 01dα1dαn1 denotes integration over the region 0αi1 with i=1n1αi1.

The next step is to perform the α integration.

0dα αn1exp(αx)=n1(x)n1(0dαexp(αx))=(n1)!xn.

where we have defined x=α1A1++αn1An1+(1α1αn1)An.

Substituting this result, we get to the penultimate form,

1A1An=(n1)!01dα1dαn11[α1A1++αn1An1+(1α1αn1)An]n,

and, after introducing an extra integral, we arrive at the final form of the Feynman parametrization, namely,

1A1An=(n1)!01dα101dαnδ(1α1αn)[α1A1++αnAn]n.

Similarly, in order to derive the Feynman parametrization form of the most general case,1A1α1...Anαn one could begin with the suitable different Schwinger parametrization form of factors in the denominator, namely,

1A1α1=1(α11)!0ds1s1α11es1A1=1Γ(α1)α11(A1)α11(0ds1es1A1)

and then proceed exactly along the lines of previous case.

Alternative form

An alternative form of the parametrization that is sometimes useful is

1AB=0dλ[λA+B]2.

This form can be derived using the change of variables λ=u/(1u). We can use the product rule to show that dλ=du/(1u)2, then

1AB=01du[uA+(1u)B]2=01du(1u)21[u1uA+B]2=0dλ[λA+B]2

More generally we have

1AmBn=Γ(m+n)Γ(m)Γ(n)0λm1dλ[λA+B]n+m,

where Γ is the gamma function.

This form can be useful when combining a linear denominator A with a quadratic denominator B, such as in heavy quark effective theory (HQET).

Symmetric form

A symmetric form of the parametrization is occasionally used, where the integral is instead performed on the interval [1,1], leading to:

1AB=211du[(1+u)A+(1u)B]2.

References

Template:Reflist

further books

  • Michael E. Peskin and Daniel V. Schroeder , An Introduction To Quantum Field Theory, Addison-Wesley, Reading, 1995.
  • Silvan S. Schweber, Feynman and the visualization of space-time processes, Rev. Mod. Phys, 58, p.449 ,1986 doi:10.1103/RevModPhys.58.449
  • Vladimir A. Smirnov: Evaluating Feynman Integrals, Springer, ISBN 978-3-54023933-8 (Dec.,2004).
  • Vladimir A. Smirnov: Feynman Integral Calculus, Springer, ISBN 978-3-54030610-8 (Aug.,2006).
  • Vladimir A. Smirnov: Analytic Tools for Feynman Integrals, Springer, ISBN 978-3-64234885-3 (Jan.,2013).
  • Johannes Blümlein and Carsten Schneider (Eds.): Anti-Differentiation and the Calculation of Feynman Amplitudes, Springer, ISBN 978-3-030-80218-9 (2021).
  • Stefan Weinzierl: Feynman Integrals: A Comprehensive Treatment for Students and Researchers, Springer, ISBN 978-3-030-99560-7 (Jun., 2023).

Template:Richard Feynman Template:Quantum-stub